- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- + 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:
点D是AC延长线上一点,且
,M是线段CD上一个动点,连接BM,延长MB到H,使得
以点B为中心,将线段BH逆时针旋转
得到线段BQ,连接AQ.
(1)依题意补全图形;
(2)求证:
(3)点N是射线AC上一点,且点N是点M关于点D的对称点,连接BN,如果
求线段AB的长.




(1)依题意补全图形;
(2)求证:

(3)点N是射线AC上一点,且点N是点M关于点D的对称点,连接BN,如果


如图,AN∥CB,B、N在AC同侧,BM、CN交于点D,AC=BC,且∠A+∠MDN=180°.
(1)如图1,当∠NAC=90°,求证:BM=CN;
(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;
(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC面积为S,若AM=
﹣1,MC=1,在E点运动过程中,请写出S的取值范围 .
(1)如图1,当∠NAC=90°,求证:BM=CN;
(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;
(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC面积为S,若AM=


如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为( )


A.100° | B.120° | C.135° | D.150° |
如图,
是等边三角形,点
在边
上( “点D不与
重合),点
是射线
上的一个动点(点
不与点
重合),连接
,以
为边作作等边三角形
,连接
.

(1)如图1,当
的延长线与
的延长线相交,且
在直线
的同侧时,过点
作
,
交
于点
,求证:
;
(2)如图2,当
反向延长线与
的反向延长线相交,且
在直线
的同侧时,求证:
;
(3)如图3,当
反向延长线与线段
相交,且
在直线
的异侧时,猜想
、
、
之间的等量关系,并说明理由.













(1)如图1,当










(2)如图2,当





(3)如图3,当







如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′的最小值为( )


A.1.6 | B.2.4 | C.2 | D.2![]() |
如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=A
A.![]() (1)求证:DA∥BC; (2)猜想线段DF、AF的数量关系,并证明你的猜想. |
已知点C是线段AB上一点,在线段AB的同侧作△CAD和△CBE,直线BD和AE相交于点F,CA=CD,CB=CE,∠ACD=∠BCE。


(1)如图①,若∠ACD=600,则∠AFB=___________;若∠ACD=
,则∠AFB=___________。
(2)如图②,将图①中的△CAD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),试探究∠AFB与
的数量关系,并说明理由。


(1)如图①,若∠ACD=600,则∠AFB=___________;若∠ACD=

(2)如图②,将图①中的△CAD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),试探究∠AFB与

已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF

如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD =∠BCE = 90°,点M为AN的中点,过点E与AD平行的直线交射线AM于点N。

(1)当A,B,C三点在同一直线上时(如图1),求证:AD=NE ;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由。

(1)当A,B,C三点在同一直线上时(如图1),求证:AD=NE ;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由。
如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点,(不与点B、C)重合,将线段AD绕点A逆时针旋转60°得到AE,连接EC,则∠ACE的度数是__________,线段AC,CD,CE之间的数量关系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
