- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图所示,D为△ABC边BC上任意一点,F、E分别为AB、AC的中点,NN连接DF并延长至点M,使
,连接DE并延长至点N,使
,连接MN,试判断MN与BC的位置关系,并证明你的结论.



如图(a),(b),(c)所示,点E、D分别是正
、正四边形ABCM,正五边形ABCMN钟以C点为顶点的相邻两边上的点,且
,DB交AE于点P.

(1)在图(a)中,求
的度数.
(2)在图(b)中,
的度数为________,图(c)中,
的度数为________.
(3)根据前面探索,你能否将本题推广到一般的正n边形情况.若能,写出推广问题和结论;若不能,请说明理由.



(1)在图(a)中,求

(2)在图(b)中,


(3)根据前面探索,你能否将本题推广到一般的正n边形情况.若能,写出推广问题和结论;若不能,请说明理由.
如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.

(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.

(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
如图,已知BD是菱形ABCD的一条对角线,请仅用无刻度的直尺,分别按下列要求画图.
(1)如图,点E在AB上,连接DE,在BC上取点F,使
;

(2)如图,
为等腰直角三角形,
,在菱形ABCD内取点F,使四边形BEDF为正方形.
(1)如图,点E在AB上,连接DE,在BC上取点F,使


(2)如图,



如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.

(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.

(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.