- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是( )


A.S1=S2=S3 | B.S1=S2<S3 |
C.S1=S3<S2 | D.S2=S3<S1 |
在正方形ABCD中,点G在AB上,点H在BC上,且∠GDH=45°,DG、DH分别与对角线AC交于点E、F,则线段AE、EF、FC之间的数量关系为_______ . 

我们定义:如图1、图2、图3,在
中,把
绕点
顺时针旋转
得到
,把
绕点
逆时针旋转
得到
,连接
,当
时,我们称
是
的“旋补三角形”,
边
上的中线
叫做
的“旋补中线”,点
叫做“旋补中心”.图1、图2、图3中的
均是
的“旋补三角形”.

(1)①如图2,当
为等边三角形时,“旋补中线”
与
的数量关系为:
______
;
②如图3,当
,
时,则“旋补中线”
长为______.
(2)在图1中,当
为任意三角形时,猜想“旋补中线”
与
的数量关系,并给予证明.





















(1)①如图2,当





②如图3,当



(2)在图1中,当



已知,如图所示,正方形
的边长为1,
为
边上的一个动点(点
与
、
不重合),以
为一边向正方形
外作正方形
,连接
交
的延长线于点
.

(1)求证:①
≌△
. ②
.
(2)当
平分
时,求
的长.













(1)求证:①



(2)当



在正方形ABCD和正方形AEFG中,点B在边AG上,点D在线段EA的延长线上,连接BE.

(1)如图1,求证:DG⊥BE;
(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,使点B恰好落在线段DG上.
①求证:DG⊥BE;
②若AB=2,AG=3,求线段BE的长.

(1)如图1,求证:DG⊥BE;
(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,使点B恰好落在线段DG上.
①求证:DG⊥BE;
②若AB=2,AG=3,求线段BE的长.
在£ABCD 中,∠BAD 的平分线交直线BC 于点E,交直线DC 于点F,∠D=120°.

(1)如图 1,若 AD=6,求△ADF 的面积;
(2)如图 2,过点 F 作FG∥CE,FG=CE,连结DB、DG,求证:BD=DG.

(1)如图 1,若 AD=6,求△ADF 的面积;
(2)如图 2,过点 F 作FG∥CE,FG=CE,连结DB、DG,求证:BD=DG.