- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从A出发沿射线AG以1cm/s的速度与运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).

(1)连接EF,当EF经过AC边的中点D是,求证△ADE≌△CDF;
(2)填空题:①当t为________s时,四边形ACFE是菱形;
②当t为________s时,以A,C,F,E为顶点的四边形为平行四边形.

(1)连接EF,当EF经过AC边的中点D是,求证△ADE≌△CDF;
(2)填空题:①当t为________s时,四边形ACFE是菱形;
②当t为________s时,以A,C,F,E为顶点的四边形为平行四边形.
如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结D
A.![]() (1)证明DE∥CB; (2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形. |
如图,在平行四边形ABCD中(BC>AB),过A作AF⊥BC,垂足为F,过C作CH⊥AB,垂足为H,交AF于G,点E为FC上一点,且GE⊥E
A.![]() (1)若FC=2BF=4,AB= ![]() (2)若AF=FC,F为BE中点,求证: ![]() |
如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=7,MN=3,则AC的长为:()


A.14 | B.13 | C.12 | D.11 |
如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.

(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断△BNC的形状,并证明你的结论.

(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断△BNC的形状,并证明你的结论.
在正方形ABCD和正方形AEFG中,点B在边AG上,点D在线段EA的延长线上,连接BE.

(1)如图1,求证:DG⊥BE;
(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,使点B恰好落在线段DG上.
①求证:DG⊥BE;
②若AB=2,AG=3,求线段BE的长.

(1)如图1,求证:DG⊥BE;
(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,使点B恰好落在线段DG上.
①求证:DG⊥BE;
②若AB=2,AG=3,求线段BE的长.
如图的
中,
,且
为
上一点.今打算在
上找一点
,在
上找一点
,使得
与
全等,以下是甲、乙两人的作法:
(甲)连接
,作
的中垂线分别交
、
于
点、
点,则
、
两点即为所求
(乙)过
作与
平行的直线交
于
点,过
作与
平行的直线交
于
点,则
、
两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )











(甲)连接








(乙)过










对于甲、乙两人的作法,下列判断何者正确?( )

A.两人皆正确 | B.两人皆错误 |
C.甲正确,乙错误 | D.甲错误,乙正确 |
如图,矩形ABCD中,AB=4,BC=3,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为_____.
