- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知
中,
厘米,
,
厘米,点
为
的中点.如果点
在线段
上以4厘米/秒的速度由
点向
点运动.同时,点
在线段
上由
点以
厘米/秒的速度向
点运动.设运动的时间为
秒.
(1)直接写出:①
厘米;②
厘米;③
厘米;④
厘米;(可用含
、
的代数式表示)
(2)若以
,
,
为顶点的三角形和以
,
,
为顶点的三角形全等,试求
、
的值;
















(1)直接写出:①






(2)若以









如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,

(1)求C点的坐标;
(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP−DE的值;
(3)如图3,已知点F坐标为(−2,−2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90∘,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m−n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.



(1)求C点的坐标;
(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP−DE的值;
(3)如图3,已知点F坐标为(−2,−2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90∘,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m−n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.
如图(1),在边长为1个单位长度的小正方形组成的4×3的网格中,给出了以格点(网格线的交点)为顶点的格点
,请在图(2)—(4)中各画出一个与图(1)中
全等但在网格中位置不同的格点三角形.



(1)如图1,在等边△ABC中,点M是BC边上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,并连结CN.求证:AB=CN+CM.
(2)(类比探究)如图2,在等边△ABC中,若点M是BC延长线上的任意一点(不含端点C),其它条件不变,则AB=CN+CM是否还成立?若成立,请说明理由;若不成立,请写出AB,CN,CM三者之间的数量关系,并给予证明.
(2)(类比探究)如图2,在等边△ABC中,若点M是BC延长线上的任意一点(不含端点C),其它条件不变,则AB=CN+CM是否还成立?若成立,请说明理由;若不成立,请写出AB,CN,CM三者之间的数量关系,并给予证明.
