- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.

探究:在下面两种条件下,线段BM、MN、NC之间的关系,并加以证明.
①AN=NC(如图②); ②DM//AC(如图③).
思考:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.


探究:在下面两种条件下,线段BM、MN、NC之间的关系,并加以证明.
①AN=NC(如图②); ②DM//AC(如图③).
思考:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.
下列说法错误的是()
A.顶角和腰对应相等的两个等腰三角形全等 |
B.顶角和底边对应相等的两个等腰三角形全等 |
C.斜边对应相等的两个等腰直角三角形全等 |
D.两个等边三角形全等 |
如图,过边长为3的等边三角形ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,问:若PA=CQ时,连接PQ交AC边于D,求DE的长?

如图,已知AB=DE,∠B=∠DEF,下列条件中不能判定△ABC≌△DEF的是( )


A.∠A=∠D | B.AC∥DF |
C.BE=CF | D.AC=DF |
小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.

(一)猜测探究
在
中,
,
是平面内任意一点,将线段
绕点
按顺时针方向旋转与
相等的角度,得到线段
,连接
.
(1)如图1,若
是线段
上的任意一点,请直接写出
与
的数量关系是 ,
与
的数量关系是 ;
(2)如图2,点
是
延长线上点,若
是
内部射线
上任意一点,连接
,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二)拓展应用
如图3,在
中,
,
,
,
是
上的任意点,连接
,将
绕点
按顺时针方向旋转
,得到线段
,连接
.求线段
长度的最小值.

(一)猜测探究
在








(1)如图1,若






(2)如图2,点






(二)拓展应用
如图3,在













如图,已知在△ABC中,AB=AC,∠B=∠C,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.

(1)用含t的式子表示PC的长为 ;
(2)若点Q的运动速度与点P的运动速度相等,当t=2时,△BPD与△CQP是否全等,请说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使△BPD与△CQP全等?

(1)用含t的式子表示PC的长为 ;
(2)若点Q的运动速度与点P的运动速度相等,当t=2时,△BPD与△CQP是否全等,请说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使△BPD与△CQP全等?
如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:

①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤FG∥AD.其中正确的有( )

①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤FG∥AD.其中正确的有( )
A.2个 | B.3个 | C.4个 D. 5个 |