刷题首页
题库
初中数学
题干
小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一)猜测探究
在
中,
,
是平面内任意一点,将线段
绕点
按顺时针方向旋转与
相等的角度,得到线段
,连接
.
(1)如图1,若
是线段
上的任意一点,请直接写出
与
的数量关系是
,
与
的数量关系是
;
(2)如图2,点
是
延长线上点,若
是
内部射线
上任意一点,连接
,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二)拓展应用
如图3,在
中,
,
,
,
是
上的任意点,连接
,将
绕点
按顺时针方向旋转
,得到线段
,连接
.求线段
长度的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-23 02:12:38
答案(点此获取答案解析)
同类题1
如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=A
A.
(1)求证:DA∥BC;
(2)猜想线段DF、AF的数量关系,并证明你的猜想.
同类题2
已知Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,D为AB边上一点,且BD=3,将△BCD绕着点C顺时针旋转60°到△B′CD′,则AD′的长为_____.
同类题3
(1)如图 1 所示,△ ABC 和△ AEF 为等边三角形,点 E 在△ ABC 内部,且 E 到点 A、B、C 的距离分别为 3、4、5,求∠AEB 的度数.
(2)如图 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 为 BC 上的两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°,得到△AC
A.求证:MN
= NC
+BM
(提示:旋转前后的图形全等)
同类题4
如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90
0
,其他条件不变,在图2中补出符合要求的图形,并判断第(1)(2)两小题的结论是否仍然成立,不要求证明.
同类题5
如图
中
,
,
D
、
E
为
BC
上两点,且
.将
绕
A
顺时针旋转90°得到
,连接EF,下列结论:①
AE
平分
②
③
④
,正确的有(序号)______.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型