- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接D
A.![]() (1)DE的长为 . (2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等? (3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由. |
如图,△ABC中,BA=BC,CO⊥AB于点O,AO=4,BO=6.

(1)求BC,AC的长;
(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.
①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.
②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果).

(1)求BC,AC的长;
(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.
①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.
②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果).
如图,长方形ABCD中,AB=4,AD=3,长方形内有一个点P,连结AP,BP,CP,已知∠APB=90°,CP=CB,延长CP交AD于点E,则AE=_____.

如图,在
和
中,
,
,
,
不动,
绕点
旋转,连接
,
,
为
的中点,连接
.
(1)如图①,当
时,求证:
;
(2)当
时,(1)的结论是否成立;请结合图②说明理由.














(1)如图①,当


(2)当



已知,正方形ABCD,G是BC边上ー点,连接AG,分别以AG和BG为直角边作等腰Rt△AGF和等腰Rt△GBE,使∠GBE=∠AGF=90°,点E,F在BC下方,连接E
A.![]() 求证:①∠BAG=∠BGF, ②CG=EF: |
已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点
A.![]() (1)求证:△BCE≌△DCF; (2)求CF的长; (3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由. |
如图,四边形
,
、
分别平分四边形的外角
和
,设
,
.


(1)如图1,若
,求
的度数;
(2)如图1,若
与
相交于点
,
,请写出
、
所满足的等量关系式;
(3)如图2,若
,判断
、
的位置关系,并说明理由.









(1)如图1,若


(2)如图1,若






(3)如图2,若


