- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图已知Rt△ABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC 于点E,垂足为点D,取线段BE的中点F,联结 DF,求证:AC=DF。

如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P
(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________
(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明
(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________
(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________
(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明
(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________

如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD、CM分别是斜边上的高和中线,那么下列结论中错误的是( )


A.CM=AC | B.∠ACM=∠DCB | C.AD=DM | D.DB=4AD |
如图,点D在Rt△ABC的斜边AB上,且AC=6,

(1) 若AB比BC大2,①求AB的长;②若CD⊥AB于点D,求CD的长.
(2)若AD=7,DB=11,∠CDB=2∠B,求CD的长.

(1) 若AB比BC大2,①求AB的长;②若CD⊥AB于点D,求CD的长.
(2)若AD=7,DB=11,∠CDB=2∠B,求CD的长.
如图,折叠长方形ABCD的一边AD,点D落在BC边的F处,AE是折痕,已知DC=8cm,AD=10cm,CF= 4cm,则折痕AE的长为_________(结果保留根号).

如图,将矩形纸片
放入以
所在直线为
轴,
边上一点
为坐标原点的平面直角坐标系中,连结
。将纸片
沿
折叠,点
恰好落在
边上点
处,若
,则点
的坐标为________________。













