- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知直线l1:y1=2x+3与直线l2:y2=kx﹣1交于A点,A点横坐标为﹣1,且直线l1与x轴交于B点,与y轴交于D点,直线l2与y轴交于C点.
(1)求出A、B、C、D点坐标;
(2)求出直线l2的解析式;
(3)连结BC,求出S△ABC.
(1)求出A、B、C、D点坐标;
(2)求出直线l2的解析式;
(3)连结BC,求出S△ABC.

如图,某电信公司提供了
,
两种方案的移动通讯费用
(元)与通话时间
(分)之间的关系,则以下说法正确的是( )
①若通话时间少于120分,则
方案比
方案便宜
②若通话时间超过200分,则
方案比
方案便宜
③通讯费用为60元,则
方案比
方案的通话时间多
④当通话时间是170分钟/时,两种方案通讯费用相等





①若通话时间少于120分,则


②若通话时间超过200分,则


③通讯费用为60元,则


④当通话时间是170分钟/时,两种方案通讯费用相等

A.1个 | B.2个 | C.3个 | D.4个 |
小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,图中
,
分别表示两人的路程与小明追赶时间的关系.

(1)哪条线表示小明的路程与时间之间的关系?
(2)小明让小亮先跑了多少米?
(3)谁将赢得这场比赛?
(4)
对应的一次函数表达式中,一次项系数是多少?它的实际意义是什么?



(1)哪条线表示小明的路程与时间之间的关系?
(2)小明让小亮先跑了多少米?
(3)谁将赢得这场比赛?
(4)

如图,直线y=x+4与两坐标轴相交于A,B两点,点P为线段OA上的动点,连结BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M经过的路径长为_____.

如图,在平面直角坐标系中,直线l1:y=
x+b与直线l2:y=kx+7交于点A(2,4),直线l1与x轴交于点C,与y轴交于点B,将直线l1向下平移7个单位得到直线l3,l3与y轴交于点D,与l2交于点E,连接AD.
(1)求交点E的坐标;
(2)求△ADE的面积.


(1)求交点E的坐标;
(2)求△ADE的面积.
如图,在平面直角坐标系中,直线l1的解析式为
,直线l2的解析式为
,与x轴、y轴分别交于点A、点B,直线l1与l2交于点


A.![]() ![]() (1)求点A、点B、点C的坐标,并求出△COB的面积; (2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标; (3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由. |
如图,直线y=kx+6与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0),点P是直线EF上的一个动点.
(1)求k的值;
(2)点P在第二象限内的直线EF上的运动过程中,写出△OPA的面积S与x的函整表达式,并写出自变量x的取值范围;
(3)探究,当点P在直线EF上运动到时,△OPA的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.
(1)求k的值;
(2)点P在第二象限内的直线EF上的运动过程中,写出△OPA的面积S与x的函整表达式,并写出自变量x的取值范围;
(3)探究,当点P在直线EF上运动到时,△OPA的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.

如图,直线y=-
x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B′处.
(1)求A、B两点的坐标;
(2)求直线AM的表达式;
(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

(1)求A、B两点的坐标;
(2)求直线AM的表达式;
(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量
(千瓦时)关于已行驶路程
(千米)的函数图象.下列说法错误的是( )




A.该汽车的蓄电池充满电时,电量是60千瓦时 |
B.蓄电池剩余电量为35千瓦时,汽车已行驶了150千米 |
C.当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时 |
D.25千瓦时的电量,汽车能行使![]() |
A、B两地相距500千米,一辆汽车以50千米/时的速度由A地驶向B地.汽车距B地的距离y(千米)与行驶时间t(之间)的关系式为________________.在这个变化过程中,自变量是___________,因变量是_________.