- 数与式
- 平方差公式
- + 完全平方公式
- 运用完全平方公式进行运算
- 通过对完全平方公式变形求值
- 完全平方公式在几何图形中的应用
- 完全平方式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.

(1)图2中阴影部分的面积请用两种方法表示:① ;②_________.
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)观察图3,你能得到怎样的代数恒等式?

(1)图2中阴影部分的面积请用两种方法表示:① ;②_________.
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)观察图3,你能得到怎样的代数恒等式?
已知x+y=7,xy=-8,下列各式计算结果不正确的是( )
A.(x-y)2=81 | B.x2+y2=65 | C.x2+y2=511 | D.|x2-y2|=63 |
如图,有三种规格的卡片,其中边长为
的正方形卡片1张,边长为
的正方形卡片4张,长、宽分别为
,
的长方形卡片
张.若使用这些卡片刚好可以拼成一个边长为
的正方形,则
的值为( )









A.1 | B.2 | C.3 | D.4 |
请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)
(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的
满足
,求:①
的值;②
的值. 
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)
(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的





如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形. 设直角三角形较长直角边长为
,较短直角边长为
,若
,则小正方形的面积为___________. 



