- 数与式
- 平方差公式
- + 完全平方公式
- 运用完全平方公式进行运算
- 通过对完全平方公式变形求值
- 完全平方公式在几何图形中的应用
- 完全平方式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
先阅读下面的内容,再解决问题:
例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:因为m2+2mn+2n2﹣6n+9=0,
所以m2+2mn+n2+n2﹣6n+9=0,
所以(m+n)2+(n﹣3)2=0,
所以m+n=0,n﹣3=0,
所以m=﹣3,n=3.
问题(1)若x2+2y2﹣2xy+6y+9=0,求xy的值;
(2)已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b﹣25,且c是△ABC中最长的边,求c的取值范围.
例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:因为m2+2mn+2n2﹣6n+9=0,
所以m2+2mn+n2+n2﹣6n+9=0,
所以(m+n)2+(n﹣3)2=0,
所以m+n=0,n﹣3=0,
所以m=﹣3,n=3.
问题(1)若x2+2y2﹣2xy+6y+9=0,求xy的值;
(2)已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b﹣25,且c是△ABC中最长的边,求c的取值范围.
先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0,
∴m2+2mn+n2+n2﹣6n+9=0,
∴(m+n)2+(n﹣3)2=0,
∴m+n=0,n﹣3=0,
∴m=﹣3,n=3
问题:
(1)若x2+2y2+2xy﹣4y+4=0,求
x+y的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.
解:∵m2+2mn+2n2﹣6n+9=0,
∴m2+2mn+n2+n2﹣6n+9=0,
∴(m+n)2+(n﹣3)2=0,
∴m+n=0,n﹣3=0,
∴m=﹣3,n=3
问题:
(1)若x2+2y2+2xy﹣4y+4=0,求

(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.
填空:
a²+______+b²=(a+b)²;
a²-____+b²=(a-b)²;
a²+______+1=(a+1)²;
4x²-______+25=(2x-5)².
a²+______+b²=(a+b)²;
a²-____+b²=(a-b)²;
a²+______+1=(a+1)²;
4x²-______+25=(2x-5)².
下列各式中正确的是( )
A.(a - b)2= a2- b2 | B.(a + 2b)2= a2+ 2ab + b2 |
C.(a + b)2= a2+ b2 | D.(-a + b)2= a2- 2ab + b2 |