- 数与式
- 平方差公式
- + 完全平方公式
- 运用完全平方公式进行运算
- 通过对完全平方公式变形求值
- 完全平方公式在几何图形中的应用
- 完全平方式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图(1),有A、B、C三种不同型号的卡片若干张,其中A型是边长为a(a>b)的正方形,B型是长为a、宽为b的长方形,C型是边长为b的正方形.

(1)若用A型卡片1张,B型卡片2张,C型卡片1张拼成了一个正方形(如图(2)),此正方形的边长为 ,根据该图形请写出一条属于因式分解的等式: .
(2)若要拼一个长为2a+b,宽为a+2b的长方形,设需要A类卡片x张,B类卡片y张,C类卡片z张,则x+y+z= .
(3)现有A型卡片1张,B型卡片6张,C型卡片11张,从这18张卡片中拿掉两张卡片,余下的卡片全用上,你能拼出一个长方形或正方形吗?有几种拼法?请你通过运算说明理由.

(1)若用A型卡片1张,B型卡片2张,C型卡片1张拼成了一个正方形(如图(2)),此正方形的边长为 ,根据该图形请写出一条属于因式分解的等式: .
(2)若要拼一个长为2a+b,宽为a+2b的长方形,设需要A类卡片x张,B类卡片y张,C类卡片z张,则x+y+z= .
(3)现有A型卡片1张,B型卡片6张,C型卡片11张,从这18张卡片中拿掉两张卡片,余下的卡片全用上,你能拼出一个长方形或正方形吗?有几种拼法?请你通过运算说明理由.
阅读下列材料:利用完全平方公式,将多项式
变形为
的形式.
例如:
.
(1)填空:将多项式
变形为
的形式,并判断
与0的大小关系.
∵
.
所以
______0(填“>”、“<”、“=”)
(2)如图①所示的长方形边长分别是
、
,求长方形的面积
(用含
的式子表示);如图②所示的长方形边长分别是
、
,求长方形的面积
(用含
的式子表示)
(3)比较(2)中
与
的大小,并说明理由. 


例如:

(1)填空:将多项式



∵

所以

(2)如图①所示的长方形边长分别是








(3)比较(2)中


