- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 利用重要不等式证明
- 调整法 (放缩法)
- 归纳法
- 切线法
- 展开法
- 局部法
- + 反证法
- 其他
- 比较法
- 构造法
一个简单图中两两相邻的t个项点称为一个团,与其余每个顶点均相邻的顶点称为中心点.给定整数
及满足
的整数k,一个n阶简单图G中不存在k+1团,其全部k团记为
.
(1)证明:
;
(2)若在图G中再添加一条边就存在k+1团,求图G的中心点个数的最小值.



(1)证明:

(2)若在图G中再添加一条边就存在k+1团,求图G的中心点个数的最小值.
已知集合
,且
中的元素个数
大于等于5.若集合
中存在四个不同的元素
,使得
,则称集合
是“关联的”,并称集合
是集合
的“关联子集”;若集合
不存在“关联子集”,则称集合
是“独立的”.
分别判断集合
和集合
是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;
已知集合
是“关联的”,且任取集合
,总存在
的关联子集
,使得
.若
,求证:
是等差数列;
集合
是“独立的”,求证:存在
,使得
.


























设
,若
,则称
为集合
的
元“好集”;
(1)写出实数集
的一个二元“好集”;
(2)问:正整数集
上是否存在二元“好集”?说明理由;
(3)求出正整数集
上的所有三元“好集”;





(1)写出实数集

(2)问:正整数集

(3)求出正整数集

无穷数列
,若存在正整数
,使得该数列由
个互不相同的实数组成,且对于任意的正整数
,
中至少有一个等于
,则称数列
具有性质
.集合
.
(1)若
,
,判断数列
是否具有性质
;
(2)数列
具有性质
,且
,求
的值;
(3)数列
具有性质
,对于
中的任意元素
,
为第
个满足
的项,记
,证明:“数列
具有性质
”的充要条件为“数列
是周期为
的周期数列,且每个周期均包含
个不同实数”.










(1)若




(2)数列




(3)数列














设数列
和
的项数均为
,则将两个数列的偏差距离定义为
,其中
.
(1)求数列1,2,7,8和数列2,3,5,6的偏差距离;
(2)设
为满足递推关系
的所有数列
的集合,
和
为
中的两个元素,且项数均为
,若
,
,
和
的偏差距离小于2020,求
最大值;
(3)记
是所有7项数列
或
的集合,
,且
中任何两个元素的偏差距离大于或等于3,证明:
中的元素个数小于或等于16.





(1)求数列1,2,7,8和数列2,3,5,6的偏差距离;
(2)设












(3)记





