- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 归纳推理
- 归纳推理概念辨析
- 数与式中的归纳推理
- 图与形中的归纳推理
- 类比推理
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若正偶数由小到大依次排列构成一个数列,则称该数列为“正偶数列”,且“正偶数列”有一个有趣的现象:
①2+4=6;
②8+10+12=14+16;
③18+20+22+24=26+28+30;
……
按照这样的规律,则2 018所在等式的序号为( )
A.29 | B.30 |
C.31 | D.32 |
《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自调无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:
则按照以上规律,若具有
,则
_______.



下面几种推理是演绎推理的个数是( )
①两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;
②猜想数列1,3,5,7,9,11,…的通项公式为
;
③由正三角形的性质得出正四面体的性质;
④半径为
的圆的面积
,则单位圆的面积
.
①两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°;
②猜想数列1,3,5,7,9,11,…的通项公式为

③由正三角形的性质得出正四面体的性质;
④半径为



A.1个 | B.2个 | C.3个 | D.4个 |