- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若a,b是常数,a>0,b>0,a≠b,x,y∈(0,+∞),则
,当且仅当
=
时取等号.利用以上结论,可以得到函数f(x)=
(0<x<
)的最小值为( )





A.5 | B.15 |
C.25 | D.2 |
有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“我没有获奖”,乙说:“是丙获奖”,丙说:“是丁获奖”,丁说:“我没有获奖”.在以上问题中只有一人回答正确,根据以上的判断,获奖的歌手是__________.
3位逻辑学家分配10枚金币,因为都对自己的逻辑能力很自信,决定按以下方案分配:
(1)抽签确定各人序号:1,2,3;
(2)1号提出分配方案,然后其余各人进行表决,如果方案得到不少于半数的人同意(提出方案的人默认同意自己方案),就按照他的方案进行分配,否则1好只得到2枚金币,然后退出分配与表决;
(3)再由2号提出方案,剩余各人进行表决,当且仅当不少于半数的人同意时(提出方案的人默认同意自己方案),才会按照他的提案进行分配,否则也将得到2枚金币,然后退出分配与表决;
(4)最后剩的金币都给3号.
每一位逻辑学家都能够进行严密的逻辑推理,并能很理智的判断自身的得失,1号为得到最多的金币,提出的分配方案中1号、2号、3号所得金币的数量分别为__________.
(1)抽签确定各人序号:1,2,3;
(2)1号提出分配方案,然后其余各人进行表决,如果方案得到不少于半数的人同意(提出方案的人默认同意自己方案),就按照他的方案进行分配,否则1好只得到2枚金币,然后退出分配与表决;
(3)再由2号提出方案,剩余各人进行表决,当且仅当不少于半数的人同意时(提出方案的人默认同意自己方案),才会按照他的提案进行分配,否则也将得到2枚金币,然后退出分配与表决;
(4)最后剩的金币都给3号.
每一位逻辑学家都能够进行严密的逻辑推理,并能很理智的判断自身的得失,1号为得到最多的金币,提出的分配方案中1号、2号、3号所得金币的数量分别为__________.
观察下列数表:
1
3 5
7 9 11 13
15 17 19 21 23 25 27 29
设2017是该表第
行的第
个数,则
的值为__________.
1
3 5
7 9 11 13
15 17 19 21 23 25 27 29
设2017是该表第



高三某班一学习小组的
四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①
不在散步,也不在打篮球;②
不在跳舞,也不在散步;③“
在散步”是“
在跳舞”的充分条件;④
不在打篮球,也不在散步;⑤
不在跳舞,也不在打篮球.以上命题都是真命题,那么
在_________ .








一个煤气站有5个阀门控制对外输送煤气,使用这些阀门必须遵守以下操作规则:(ⅰ)如果开启1号阀门,那么必须同时开启2号阀门并且关闭5号阀门;(ⅱ)如果开启2号阀门或者5号阀门,那么要关闭4号阀门;(ⅲ)不能同时关闭3号阀门和4号阀门,现在要开启1号阀门,则同时开启的2个阀门是________.
已知甲、乙、丙三人恰好都去过北京、上海中的某一个城市,三人分别给出了以下说法:
甲说:“我去过上海,乙也去过上海,丙去过北京.”
乙说:“我去过上海,甲说得不完全对.”
丙说:“我去过北京,乙说得对.”
已知甲、乙、丙三人中恰好有1人说得不对,则去过北京的是_________.
甲说:“我去过上海,乙也去过上海,丙去过北京.”
乙说:“我去过上海,甲说得不完全对.”
丙说:“我去过北京,乙说得对.”
已知甲、乙、丙三人中恰好有1人说得不对,则去过北京的是_________.