小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.
(1)求小陈同学三次投篮至少命中一次的概率;
(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
随机变量的分布列为

1
2
3
4

0.2
0.3
0.4

 
(  )
A.4.8B.5C.6D.8.4
当前题号:2 | 题型:单选题 | 难度:0.99
某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.
(1)求小张在这次活动中获得的奖金数的概率分布及数学期望;
(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
某同学参加了今年重庆市举办的数学、物理、化学三门学科竞赛的初赛,在成绩公布之前,老师估计他能进复赛的概率分别为,且这名同学各门学科能否进复赛相互独立.
(1)求这名同学三门学科都能进复赛的概率;
(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
甲、乙两人通过雅思考试的概率分别为,两人考试时相互独立互不影响,记表示两人中通过雅思考试的人数,则的方差为(  )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某学校参加某项竞赛仅有一个名额,结合平时训练成绩,甲、乙两名学生进入最后选拔,学校为此设计了如下选拔方案:设计6道测试题,若这6道题中,甲能正确解答其中的4道,乙能正确解答每个题目的概率均为.假设甲、乙两名学生解答每道测试题都相互独立,互不影响,现甲、乙从这6道测试题中分别随机抽取3题进行解答.
(1)求甲、乙两名学生共答对2道测试题的概率;
(2)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?
当前题号:6 | 题型:解答题 | 难度:0.99
某商场为了解该商场某商品近5年日销售量(单位:件),随机抽取近5年50天的销售量,统计结果如下:
日销售量
100
150
天数
30
20
频率


 
若将上表中频率视为概率,且每天的销售量相互独立.则在这5年中:
(1)求5天中恰好有3天销售量为150件的概率(用分式表示);
(2)已知每件该商品的利润为20元,用X表示该商品某两天销售的利润和(单位:   元),求X的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
已知离散型随机变量的分布列为表格所示,则随机变量的均值为(   )

0
1
2
3





 
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
已知随机变量的分布列为








 
且数学期望,则方差__________.
当前题号:9 | 题型:填空题 | 难度:0.99
为了解甲、乙两奶粉厂的产品质量,采用分层抽样的方法从甲、乙两奶粉厂生产的产品中分别抽取16件和5件,测量产品中微量元素的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号
1
2
3
4
5

170
178
166
176
180

74
80
77
76
81
 
(1)已知甲厂生产的产品共有96件,求乙厂生产的产品数量;
(2)当产品中的微量元素满足时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).
当前题号:10 | 题型:解答题 | 难度:0.99