袋中有20个大小相同的球,其中标有号码0的球有10个,标有号码的球有个,其中1,2,3,4.现从袋中任取1球,表示所取球的号码.
(1)求的分布列、均值和方差;
(2)若,且,求的值.
当前题号:1 | 题型:解答题 | 难度:0.99
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数上的偶函数”为事件,求事件的概率;
(2)求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
已知随机变量的分布列如下表,又随机变量,则的均值是__________.
当前题号:3 | 题型:填空题 | 难度:0.99
北方某市一次全市高中女生身高统计调查数据显示:全市20000名高中女生的身高(单位:)服从正态分布.现从某高中女生中随机抽取50名测量身高,测量发现被测学生身高全部在之间,现将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.

(1)求这50名女生身高不低于172的人数;
(2)在这50名女生身高不低于172的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前260名的人数记为,求的数学期望.
参数数据:
.
当前题号:4 | 题型:解答题 | 难度:0.99
袋中共有8个乒乓球,其中有5个白球,3个红球,这些乒乓球除颜色外完全相同.从袋中随机取出一球,如果取出红球,则把它放回袋中;如果取出白球,则该白球不再放回,并且另补一个红球放入袋中,重复上述过程次后,袋中红球的个数记为.
(I)求随机变量的概率分布及数学期望
(Ⅱ)求随机变量的数学期望关于的表达式.
当前题号:5 | 题型:解答题 | 难度:0.99
为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下:

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
若随机变量的分布列如表所示,,则(  )










 
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
甲、乙、丙三名大学生参加学校组织的“国学达人”挑战赛, 每人均有两轮答题机会,当且仅当第一轮不过关时进行第二轮答题.根据平时经验,甲、乙、丙三名大学生每轮过关的概率分别为,且三名大学生每轮过关与否互不影响.
(1)求甲、乙、丙三名大学生都不过关的概率;
(2)记为甲、乙、丙三名大学生中过关的人数,求随机变量的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
图,从甲地到丙地要经过两个十字路口(十字路口与十字路口),从乙地到丙地也要经过两个十字路口(十字路口与十字路口),设各路口信号灯工作相互独立,且在路口遇到红灯的概率分别为.

(1)求一辆车从乙地到丙地至少遇到一个红灯的概率;
(2)若小方驾驶一辆车从甲地出发,小张驾驶一辆车从乙地出发,他们相约在丙地见面,记表示这两人见面之前车辆行驶路上遇到的红灯的总个数,求的分布列及数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
2016年1月1日,我国实行全面二孩政策,同时也对妇幼保健工作提出了更高的要求.某城市实行格化管理,该市妇联在格1与格2两个区域内随机抽取12个刚满8个月的婴儿的体重信息,体重分布数据的茎叶图如图所示(中位:斤,2斤1千克).体重不超过的为合格.

(1)从格1与格2分别随机抽取2个婴儿,求格1至少一个婴儿体重合格且格2至少一个婴儿体重合格的概率;
(2)妇联从格1内8个婴儿中随机抽取4个进行抽检,若至少2个婴儿合格,则抽检通过,若至少3个合格,则抽检为良好.求格1在抽检通过的条件下,获得抽检为良好的概率;
(3)若从格1与格2内12个婴儿中随机抽取2个,用表示格2内婴儿的个数,求的分布列与数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99