- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险的基准保费为
元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况想联系,最终保费
基准保费
(
与道路交通事故相联系的浮动比率),具体情况如下表:

为了解某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:
若以这
辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )






为了解某一品牌普通


类型 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
若以这

A.![]() | B.![]() | C.![]() | D.![]() |
今年,楼市火爆,特别是一线城市.某一线城市采取“限价房”摇号制度,客户以家庭为单位进行抽签,若有
套房源,则设置
个中奖签,客户抽到中奖签视为中签,中签家庭可以在指定小区提供的房源中随机抽取一个房号,现共有20户家庭去抽取6套房源.
(l)求每个家庭能中签的概率;
(2)已知甲、乙两个友好家庭均已中签,并共同前往某指定小区抽取房号,目前该小区剩余房源有某单元27、28两个楼层共6套房,其中,第27层有2套房,第28层有4套房.记甲、乙两个家庭抽取到第28层的房源套数为
,求
的分布列及数学期望.


(l)求每个家庭能中签的概率;
(2)已知甲、乙两个友好家庭均已中签,并共同前往某指定小区抽取房号,目前该小区剩余房源有某单元27、28两个楼层共6套房,其中,第27层有2套房,第28层有4套房.记甲、乙两个家庭抽取到第28层的房源套数为


经销商第一年购买某工厂商品的单价为
(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:
为了研究该商品购买单价的情况,为此调查并整理了
个经销商一年的销售额,得到下面的柱状图.

已知某经销商下一年购买该商品的单价为
(单位:元),且以经销商在各段销售额的频率作为概率.
(1)求
的平均估计值.
(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为
记
(单位:元)表示某经销商参加这次活动获得的资金,求
的分布及数学期望.

上一年度销售额/万元 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
商品单价/元 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为了研究该商品购买单价的情况,为此调查并整理了


已知某经销商下一年购买该商品的单价为

(1)求

(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为
获奖金额/元 | 5000 | 10000 |
概率 | ![]() | ![]() |
记


阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017 年5 月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3 比0 的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.
为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30 名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:
(1)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“
或
”的
概率;
(2)根据(I)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3 人,记
表示抽到成绩等级为“
或
”的学生人数,求
的分布列及其数学期望
;
(3)从这30 名学生中,随机选取2 人,求“这两个人的成绩之差大于1分”的概率.
为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30 名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:
成绩等级 | ![]() | ![]() | ![]() | ![]() | ![]() |
成绩(分) | 5 | 4 | 3 | 2 | 1 |
人数(名) | 4 | 6 | 10 | 7 | 3 |
(1)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“


概率;
(2)根据(I)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3 人,记





(3)从这30 名学生中,随机选取2 人,求“这两个人的成绩之差大于1分”的概率.
已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a、b、c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=“|a-b|的取值”,则ξ的数学期望E(ξ)为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布
,现从甲校100分以上(含100分)的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,…,200),统计如下:

注:表中试卷编号
(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲、乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为
,求随机变量
的分布列和期望.
附:若随机变量X服从正态分布
则 




注:表中试卷编号

(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲、乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为


附:若随机变量X服从正态分布




2018年4月4日召开的国务院常务会议明确将进一步推动网络提速降费工作落实,推动我国数字经济发展和信息消费,今年移动流量资费将再降30%以上,为响应国家政策,某通讯商计划推出两款优惠流量套餐,详情如下:
这两款套餐均有以下附加条款:套餐费用月初一次性收取,手机使用流量一旦超出套餐流量,系统就会自动帮用户充值2000M流量,资费20元;如果又超出充值流量,系统再次自动帮用户充值2000M流量,资费20元,以此类推。此外,若当月流量有剩余,系统将自动清零,不可次月使用。
小张过去50个月的手机月使用流量(单位:M)的频数分布表如下:
根据小张过去50个月的手机月使用流量情况,回答以下几个问题:
(1)若小张选择A套餐,将以上频率作为概率,求小张在某一个月流量费用超过50元的概率.
(2)小张拟从A或B套餐中选定一款,若以月平均费用作为决策依据,他应订购哪一种套餐?说明理由.
套餐名称 | 月套餐费/元 | 月套餐流量/M |
A | 30 | 3000 |
B | 50 | 6000 |
这两款套餐均有以下附加条款:套餐费用月初一次性收取,手机使用流量一旦超出套餐流量,系统就会自动帮用户充值2000M流量,资费20元;如果又超出充值流量,系统再次自动帮用户充值2000M流量,资费20元,以此类推。此外,若当月流量有剩余,系统将自动清零,不可次月使用。
小张过去50个月的手机月使用流量(单位:M)的频数分布表如下:
月使用流量分组 | [2000,3000] | (3000,4000] | (4000,5000] | (5000,6000] | (6000,7000] | (7000,8000] |
频数 | 4 | 5 | 11 | 16 | 12 | 2 |
根据小张过去50个月的手机月使用流量情况,回答以下几个问题:
(1)若小张选择A套餐,将以上频率作为概率,求小张在某一个月流量费用超过50元的概率.
(2)小张拟从A或B套餐中选定一款,若以月平均费用作为决策依据,他应订购哪一种套餐?说明理由.