- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为
,
,
和
的分布列如下表.

(
)分别求期望
和
.
(
)试对这两名工人的技术水平进行比较.





(



(

甲、乙两运动员进行射击训练.已知他们击中的环数都稳定在
,
,
环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如下表:

(
)若甲、乙两运动员各射击
次,求甲运动员击中
环且乙运动员击中
环的概率.
(
)若甲射击
次,用
表示这
次射击击中
环以上(含
环)的次数,求随机变量
的分布列及期望.




(




(







某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有3个红球,3个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(2)记一次抽奖获得的红包奖金数(单位:元)为
,求
的分布列及数学期望,并计算这20位顾客(假定每位获得抽奖机会的顾客都会去抽奖)在抽奖中获得红包的总奖金数的平均值.
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(2)记一次抽奖获得的红包奖金数(单位:元)为


某企业2017年招聘员工,其中
五种岗位的应聘人数、录用人数和录用比例(精确到
)如下:
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘
岗位的6人中随机选择2人.记
为这2人中被录用的人数,求
的分布列和数学期望;
(Ⅲ)表中
各岗位的男性、女性录用比例都接近(二者之差的绝对值不大
),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)


岗位 | 男性应聘人数 | 男性录用人数 | 男性录用比例 | 女性应聘人数 | 女性录用人数 | 女性录用比例 |
![]() | 269 | 167 | ![]() | 40 | 24 | ![]() |
![]() | 40 | 12 | ![]() | 202 | 62 | ![]() |
![]() | 177 | 57 | ![]() | 184 | 59 | ![]() |
![]() | 44 | 26 | ![]() | 38 | 22 | ![]() |
![]() | 3 | 2 | ![]() | 3 | 2 | ![]() |
总计 | 533 | 264 | ![]() | 467 | 169 | ![]() |
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘



(Ⅲ)表中


不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数
的数学期望是( )

A.![]() | B.![]() | C.![]() | D.![]() |
为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:

每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工
在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工
的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为
(单位:元),求
的概率;
(3)根据表中数据估算公司的每位员工在该月所得的劳务费.

每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工

(2)为了解乙公司员工



(3)根据表中数据估算公司的每位员工在该月所得的劳务费.
在标有“甲”的袋中有
个红球和
个白球,这些球除颜色外完全相同.
(Ⅰ)若从袋中依次取出
个球,求在第一次取到红球的条件下,后两次均取到白球的概率;
(Ⅱ)现从甲袋中取出个
红球,
个白球,装入标有“乙”的空袋.若从甲袋中任取
球,乙袋中任取
球,记取出的红球的个数为
,求
的分布列和数学期望
.


(Ⅰ)若从袋中依次取出

(Ⅱ)现从甲袋中取出个






