- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.

(1)若甲解开密码锁所需时间的中位数为47,求
、
的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①按乙丙甲的先后顺序和按丙乙甲的先后顺序哪一种可使派出人员数目的数学期望更小.
②试猜想:该团队以怎样的先后顺序派出人员,可使所需派出的人员数目
的数学期望达到最小,不需要说明理由.

(1)若甲解开密码锁所需时间的中位数为47,求


(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①按乙丙甲的先后顺序和按丙乙甲的先后顺序哪一种可使派出人员数目的数学期望更小.
②试猜想:该团队以怎样的先后顺序派出人员,可使所需派出的人员数目

某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为
和
,求
和
的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
维修次数 | 2 | 3 | 4 | 5 | 6 |
甲设备 | 5 | 10 | 30 | 5 | 0 |
乙设备 | 0 | 5 | 15 | 15 | 15 |
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为




(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
甲抽取的样本数据
乙抽取的样本数据
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为
,求
的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
(参考公式:
,其中
)
甲抽取的样本数据
编号 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性别 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投篮成 绩 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的样本数据
编号 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性别 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投篮成 绩 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为


(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
| 优秀 | 非优秀 | 合计 |
男 | | | |
女 | | | |
合计 | | | 10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式:


某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取
个,利用水果的等级分类标准得到的数据如下:
(1)若将频率视为概率,从这
个水果中有放回地随机抽取
个,求恰好有
个水果是礼品果的概率.(结果用分数表示)
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.
方案
:不分类卖出,单价为
元
.
方案
:分类卖出,分类后的水果售价如下:
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这
个水果中抽取
个,再从抽取的
个水果中随机抽取
个,
表示抽取的是精品果的数量,求
的分布列及数学期望
.

等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)若将频率视为概率,从这



(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.
方案



方案

等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/kg) | 16 | 18 | 22 | 24 |
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这







某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止课间操,若无雾霾则组织课间操.预报得知,在未来一周从周一到周五的课间操时间出现雾霾的概率是:前3天均为
,后2天均为
,且每一天出现雾霾与否是相互独立的.
(1)求未来5天至少一天停止课间操的概率;
(2)求未来5天组织课间操的天数X的分布列和数学期望.


(1)求未来5天至少一天停止课间操的概率;
(2)求未来5天组织课间操的天数X的分布列和数学期望.
现代社会的竞争,是人才的竞争,各国、各地区、各单位都在广纳贤人,以更好更快的促进国家、地区、单位的发展.某单位进行人才选拔考核,该考核共有三轮,每轮都只设置一个项目问题,能正确解决项目问题者才能进入下一轮考核;不能正确解决者即被淘汰.三轮的项目问题都正确解决者即被录用.已知A选手能正确解决第一、二、三轮的项目问题的概率分别为
、
、
,且各项目问题能否正确解决互不影响.
(1)求A选手被淘汰的概率;
(2)设该选手在选拔中正确解决项目问题的个数为
,求
的分布列与数学期望.



(1)求A选手被淘汰的概率;
(2)设该选手在选拔中正确解决项目问题的个数为


每年七月份,我国J地区有25天左右的降雨时间,如图是J地区S镇2000-2018年降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

(1)假设每年的降雨天气相互独立,求S镇未来三年里至少有两年的降雨量不超过350mm的概率;
(2)在S镇承包了20亩土地种植水果的老李过去种植的甲品种水果,平均每年的总利润为31.1万元.而乙品种水果的亩产量m(kg/亩)与降雨量之间的关系如下面统计表所示,又知乙品种水果的单位利润为32-0.01×m(元/kg),请帮助老李排解忧愁,他来年应该种植哪个品种的水果可以使利润ξ(万元)的期望更大?(需说明理由);

(1)假设每年的降雨天气相互独立,求S镇未来三年里至少有两年的降雨量不超过350mm的概率;
(2)在S镇承包了20亩土地种植水果的老李过去种植的甲品种水果,平均每年的总利润为31.1万元.而乙品种水果的亩产量m(kg/亩)与降雨量之间的关系如下面统计表所示,又知乙品种水果的单位利润为32-0.01×m(元/kg),请帮助老李排解忧愁,他来年应该种植哪个品种的水果可以使利润ξ(万元)的期望更大?(需说明理由);
降雨量 | [100,200) | [200,300) | [300,400) | [400,500) |
亩产量 | 500 | 700 | 600 | 400 |
某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).


(1)当

(2)设一组电子元件的检测次数为


(3)估算当


已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球.
(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.