手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在15到75岁的人群“是否使用手机支付”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)
年龄段
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频率
0.1
0.32
0.28
0.22
0.05
0.03
使用人数
8
28
24
12
2
1
 
(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“使用手机支付”与年龄有关?
 
年龄低于45岁
年龄不低于45岁
使用手机支付
 
 
不使用手机支付
 
 
 
(2)若从年龄在[55,65),[65,75]的样本中各随机选取2人进行座谈,记选中的4人中“使用手机支付”的人数为X,求随机变量X的分布列和数学期望.
参考数据:
PK2k0
0.025
0.010
0.005
0.001
k0
3.841
6.635
7.879
10.828
 
参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99
我国已进入新时代中国特色社会主义时期,人民生活水平不断提高,某市随机统计了城区若干户市民十月人均生活支出比九月人均生活支出增加量(记为元)的情况,并根据统计数据制成如下频率分布直方图.

(1)根据频率分布直方图估算的平均值
(2)视样本中的频率为概率,现从该市所有住户中随机抽取次,每次抽取户,每次抽取相互独立,设为抽出户中值不低于元的户数,求的分布列和期望.
当前题号:2 | 题型:解答题 | 难度:0.99
甲、乙两品牌计划入驻某商场,该商场批准两个品牌先进场试销天。两品牌提供的返利方案如下:甲品牌无固定返利,卖出件以内(含件)的产品,每件产品返利元,超出件的部分每件返利元;乙品牌每天固定返利元,且每卖出一件产品再返利元。经统计,两家品牌在试销期间的销售件数的茎叶图如下:

(Ⅰ)现从乙品牌试销的天中随机抽取天,求这天的销售量中至少有一天低于的概率.
(Ⅱ)若将频率视作概率,回答以下问题:
①记甲品牌的日返利额为(单位:元),求的分布列和数学期望;
②商场拟在甲、乙两品牌中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.

求被调查者满意或非常满意该项目的频率;
若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;
已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望
当前题号:4 | 题型:解答题 | 难度:0.99
为了庆祝中华人民共和国成立70周年,某公司举行大型抽奖活动,活动中准备了一枚质地均匀的正十二面体的骰子,在其十二个面上分别标有数字1,2,3,…,12,每位员工均有一次参与机会,并规定:若第一次抛得向上面的点数为完全平方数(即能写成整数的平方形式,如),则立即视为获得大奖;若第一次抛得向上面的点数不是完全平方数,则需进行第二次抛掷,两次抛得的点数和为完全平方数(如),也可视为获得大奖.否则,只能获得安慰奖.
(1)试列举须抛掷两次才能获得大奖的所有可能情况(用表示前后两次抛得的点数),并说明所有可能情况的总数;
(2)若获得大奖的奖金(单位:元)为抛得的点数或点数和(完全平方数)的360倍,而安慰奖的奖金为48元,该公司某位员工获得的奖金为,求的分布列及数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
 
古文迷
非古文迷
合计
男生
26
24
50
女生
30
20
50
合计
56
44
100
 
(Ⅰ)根据表中数据能否判断有的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为,求随机变量的分布列与数学期望.

参考公式:,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

 

 

 
当前题号:6 | 题型:解答题 | 难度:0.99
已知离散型随机变量X的分布列为
X
0
1
2
3
P
 
 
 
 
 
则X的数学期望(    )
A.B.1C.D.2
当前题号:7 | 题型:单选题 | 难度:0.99

甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
当前题号:8 | 题型:解答题 | 难度:0.99
某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.

(I)求该市高一学生身高高于1.70米的概率,并求图1中的值.
(II)若从该市高一学生中随机选取3名学生,记为身高在的学生人数,求的分布列和数学期望;
(Ⅲ)若变量满足,则称变量满足近似于正态分布的概率分布.如果该市高一学生的身高满足近似于正态分布的概率分布,则认为该市高一学生的身高发育总体是正常的.试判断该市高一学生的身高发育总体是否正常,并说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
某高校随机抽取部分男生测试立定跳远,将成绩整理得到频率分布表如表,测试成绩在220厘米以上(含220厘米)的男生定为“合格生”,成绩在260厘米以上(含260厘米)的男生定为“优良生”.
分组(厘米)
频数
频率
[180,200)
 
0.10
[200,220)
15
 
[220,240)
 
0.30
[240,260)
 
0.30
[260,280)
 
0.20
合计
 
1.00
 
(1)求参加测试的男生中“合格生”的人数.
(2)从参加测试的“合格生”中,根据表中分组情况,按分层抽样的方法抽取8名男生,再从这8名男生中抽取3名男生,记X表示3人中“优良生”的人数,求X的分布列及数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99