- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某射手每次射击击中目标的概率是
,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记
为射手射击3次后的总得分,求
的概率分布列与数学期望
.

(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记



某销售公司在当地
、
两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了
、
两家超市往年同期各50天的该食品销售记录,得到如下数据:
以这些数据的频数代替两家超市的食品销售件数的概率,记
表示这两家超市每日共销售食品件数,
表示销售公司每日共需购进食品的件数.
(1)求
的分布列;
(2)以销售食品利润的期望为决策依据,在
与
之中选其一,应选哪个?




销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记


(1)求

(2)以销售食品利润的期望为决策依据,在


某大型商场去年国庆期间累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:
由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过800元的概率;
(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值500元、200元、100元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为
.若今年国庆期间该商场的购物单数量比去年同期增长5%,式预测商场今年国庆期间采办奖品的开销.
消费金额(单位:元) | (0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
购物单张数 | 25 | 25 | 30 | ? | ? |
由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过800元的概率;
(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值500元、200元、100元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为

某校工会开展健步走活动,要求教职工上传3月1日至3月7日微信记步数信息,下图是职工甲和职工乙微信记步数情况:

(Ⅰ)从3月1日至3月7日中任选一天,求这一天职工甲和职工乙微信记步数都不低于10000的概率;
(Ⅱ)从3月1日至3月7日中任选两天,记职工乙在这两天中微信记步数不低于10000的天数为
,求
的分布列及数学期望;
(Ⅲ)如图是校工会根据3月1日至3月7日某一天的数据,制作的全校200名教职工微信记步数的频率分布直方图.已知这一天甲和乙微信记步数在单位200名教职工中排名分别为第68和第142,请指出这是根据哪一天的数据制作的频率分布直方图(不用说明理由).

(Ⅰ)从3月1日至3月7日中任选一天,求这一天职工甲和职工乙微信记步数都不低于10000的概率;
(Ⅱ)从3月1日至3月7日中任选两天,记职工乙在这两天中微信记步数不低于10000的天数为


(Ⅲ)如图是校工会根据3月1日至3月7日某一天的数据,制作的全校200名教职工微信记步数的频率分布直方图.已知这一天甲和乙微信记步数在单位200名教职工中排名分别为第68和第142,请指出这是根据哪一天的数据制作的频率分布直方图(不用说明理由).
某社区举办北京奥运知识宣传活动,现场的“抽卡有奖游戏”特别引人注目,游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“奥运福娃”或“奥运会徽”,要求4人一组参加游戏,参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中一人一次抽到2张“奥运福娃” 卡才能得到奖并终止游戏.
(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽” 卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽” 卡的概率为
,请你回答有几张“奥运会徽”卡呢?
(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取.用
表示4人中的某人获奖终止游戏时总共抽取卡片的次数,求
的概率分布及
的数学期望.
(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽” 卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽” 卡的概率为

(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取.用



一个袋中装有形状大小完全相同的球8个,其中红球2个,白球6个,
(1)从袋中任取3个球,求恰有1个红球的概率。
(2)有放回地每次取1球,直到取到2次红球即停止,求恰好取4次停止的概率。
(3)有放回地每次取1球,共取3次,记取到红球的个数为
,求随机变量
的分布列及数学期望.
(1)从袋中任取3个球,求恰有1个红球的概率。
(2)有放回地每次取1球,直到取到2次红球即停止,求恰好取4次停止的概率。
(3)有放回地每次取1球,共取3次,记取到红球的个数为


为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:
利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.
(Ⅰ)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;
(Ⅱ)从该公司本月卖出的销售单价为20万元的机器中随机选取
台,求这两台机器的利润率不同的概率;
(Ⅲ)假设每类机器利润率不变,销售一台第一类机器获利
万元,销售一台第二类机器获利
万元,…,销售一台第五类机器获利
,依据上表统计数据,随机销售一台机器获利的期望为
,设
,试判断
与
的大小.(结论不要求证明)
机器类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 |
销售总额(万元) | ![]() | ![]() | ![]() | ![]() | ![]() |
销售量(台) | ![]() | ![]() | ![]() | ![]() | ![]() |
利润率 | ![]() | ![]() | ![]() | ![]() | ![]() |
利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.
(Ⅰ)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;
(Ⅱ)从该公司本月卖出的销售单价为20万元的机器中随机选取

(Ⅲ)假设每类机器利润率不变,销售一台第一类机器获利







现代研究表明,体脂率
(体脂百分数)是衡量人体体重与健康程度的一个标准.为分析体脂率
对人体总胆固醇
的影响,从女性志愿者中随机抽取12名志愿者测定其体脂率
值及总胆固醇
指标值(单位:mmol/L),得到的数据如表所示:

(1)利用表中的数据,是否可用线性回归模型拟合
与
的关系?请用相关系数
加以说明.(若
,则线性相关程度很高,可用线性回归模型拟合)
(2)求出
与
的线性回归方程,并预测总胆固醇
指标值为9.5时,对应的体脂率
值
为多少?(上述数据均要精确到0.1)
(3)医学研究表明,人体总胆固醇
指标值
服从正态分布
,若人体总胆固醇
指标值
在区间
之外,说明人体总胆固醇异常,该志愿者需作进一步医学观察.现用样本的
作为
的估计值,用样本的标准差
作为
的估计值,从这12名女志愿者中随机抽4人,记需作进一步医学观察的人数为
,求
的分布列和数学期望.
附:参考公式:相关系数
,
,
.
参考数据:
,
,
,
,
.






(1)利用表中的数据,是否可用线性回归模型拟合




(2)求出





(3)医学研究表明,人体总胆固醇












附:参考公式:相关系数



参考数据:





某工厂生产
、
两种零件,其质量测试按指标划分,指标大于或等于
的为正品,小于
的为次品.现随机抽取这两种零件各100个进行检测,检测结果统计如下:
(1)试分别估计
、
两种零件为正品的概率;
(2)生产1个零件
,若是正品则盈利50元,若是次品则亏损10元;生产1个零件
,若是正品则盈利60元,若是次品则亏损15元,在(1)的条件下:
(i)设
为生产1个零件
和一个零件
所得的总利润,求
的分布列和数学期望;
(ii)求生产5个零件
所得利润不少于160元的概率.




测试指标 | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 8 | 12 | 40 | 30 | 10 |
![]() | 9 | 16 | 40 | 28 | 7 |
(1)试分别估计


(2)生产1个零件


(i)设




(ii)求生产5个零件

一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为
;当无放回依次取出两个小球时,记取出的红球数为
,则( )


A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |