为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别
第一阶梯水量
第二阶梯水量
第三阶梯水量
月用水量范围(单位:立方米)



 
从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:

(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;
(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.
当前题号:1 | 题型:解答题 | 难度:0.99
某县大润发超市为了惠顾新老顾客,决定在2019年元旦来临之际举行“庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活动方案,该超市面向该县某高中学生征集活动方案.该中学某班数学兴趣小组提供的方案获得了征用.方案如下:将一个的正方体各面均涂上红色,再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记它们的着色面数之和为,记抽奖中奖的礼金为.
(Ⅰ)求
(Ⅱ)凡是元旦当天在超市购买物品的顾客,均可参加抽奖.记抽取的两个小正方体着色面数之和为6,设为一等奖,获得价值50元礼品;记抽取的两个小正方体着色面数之和为5,设为二等奖,获得价值30元礼品;记抽取的两个小正方体着色面数之和为4,设为三等奖,获得价值10元礼品,其他情况不获奖.求某顾客抽奖一次获得的礼金的分布列与数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
随机变量的分布列如下:

-1
0
1




 
,则的值是(  )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
某鲜奶店每天购进30瓶鲜牛奶,且当天的利润y(单位:元)关于当天需求量n(单位:瓶,n∈N)的函数解析式(n∈N).鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶)绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):

(1)求这100天的日利润(单位:元)的平均数;
(2)以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
在某校组织的一次篮球定点投篮训练中,规定每人最多投次;在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.同学在处的命中率0,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为












 
(1)求的值;
(2)求随机变量的数学期望
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
当前题号:5 | 题型:解答题 | 难度:0.99
某探险队分为四个小组探险甲、乙、丙三个区域,若每个小组只能探险一个区域,且每个小组选择任何一个区域是等可能的.
(1)求恰有2个小组探险甲区域的概率;
(2)求被探险区域的个数的概率分布列和数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
某理财公司有两种理财产品,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果
获利20%
获利10%
不赔不赚
亏损10%
概率
0.2
0.3
0.2
0.3
 
产品(其中
投资结果
获利30%
不赔不赚
亏损20%
概率

0.1

 
(1)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于0.7,求的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪种产品?
当前题号:7 | 题型:解答题 | 难度:0.99
已知随机变量ξη,其中η=4ξ-2,且E(η)=7,若ξ的分布列如下表,则n的值为__.
ξ
1
2
3
4
P

m
n

 
当前题号:8 | 题型:填空题 | 难度:0.99
口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X的数学期望是______ .
当前题号:9 | 题型:填空题 | 难度:0.99
某地区进行疾病普查,为此要检验每一人的血液,如果当地有人,若逐个检验就需要检验次,为了减少检验的工作量,我们把受检验者分组,假设每组有个人,把这个个人的血液混合在一起检验,若检验结果为阴性,这个人的血液全为阴性,因而这个人只要检验一次就够了,如果为阳性,为了明确这个个人中究竟是哪几个人为阳性,就要对这个人再逐个进行检验,这时个人的检验次数为次.假设在接受检验的人群中,每个人的检验结果是阳性还是阴性是独立的,且每个人是阳性结果的概率为.
(Ⅰ)为熟悉检验流程,先对3个人进行逐个检验,若,求3人中恰好有1人检测结果为阳性的概率;
(Ⅱ)设个人一组混合检验时每个人的血需要检验的次数.
①当时,求的分布列;
②是运用统计概率的相关知识,求当满足什么关系时,用分组的办法能减少检验次数.
当前题号:10 | 题型:解答题 | 难度:0.99