- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某家具城进行促销活动,促销方案是:顾客每消费满1000元,便可以获得奖券一张,每张奖券中奖的概率为
,若中奖,则家具城返还顾客现金1000元,某顾客购买一张价格为3400元的餐桌,得到3张奖券,设该顾客购买餐桌的实际支出为
(元);
(1)求
的所有可能取值;
(2)求
的分布列和数学期望
;


(1)求

(2)求


PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:

从甲城市2016年9月份的30天中随机抽取15天,这15天的PM2.5的日均浓度指数数据如茎叶图所示.

(1)试估计甲城市在2016年9月份的30天中,空气质量类别为优或良的天数;
(2)从甲城市的这15个监测数据中任取2个,设X是空气质量类别为优或良的天数,求X的分布列和数学期望.

从甲城市2016年9月份的30天中随机抽取15天,这15天的PM2.5的日均浓度指数数据如茎叶图所示.

(1)试估计甲城市在2016年9月份的30天中,空气质量类别为优或良的天数;
(2)从甲城市的这15个监测数据中任取2个,设X是空气质量类别为优或良的天数,求X的分布列和数学期望.
利用下列盈利表中的数据进行决策,应选择的方案是 ( )
盈利方案 自然 状况概率 | A1 | A2 | A3 | A4 |
0.25 | 50 | 70 | -20 | 98 |
0.30 | 65 | 26 | 52 | 82 |
0.45 | 26 | 16 | 78 | -10 |
A.A1 | B.A2 | C.A3 | D.A4 |
ξ,η为随机变量,且η=aξ+b,若E(ξ)=1.6,E(η)=3.4,则a,b可能的值为( )
A.2,0.2 | B.1,4 |
C.0.5,1.4 | D.1.6,3.4 |
某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.
某品牌豆腐食品是经过A,B,C三道工序加工而成的,A,B,C工序的产品合格率分别为
,
,
.已知每道工序的加工都相互独立,三道工序加工的产品都合格时产品为一等品;恰有两次合格为二等品;其他的为废品,不进入市场.
(1)生产一袋豆腐食品,求产品为废品的概率;
(2)生产一袋豆腐食品,设X为三道加工工序中产品合格的工序数,求X的分布列和数学期望.



(1)生产一袋豆腐食品,求产品为废品的概率;
(2)生产一袋豆腐食品,设X为三道加工工序中产品合格的工序数,求X的分布列和数学期望.
一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数
的分布列为:
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.
表示经销一件该商品的利润.
(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求
的分布列及期望
.

![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.

(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求

