为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径mm
58
59
61
62
63
64
65
66
67
68
69
70
71
73
合计
件数
1
1
3
5
6
19
33
18
4
4
2
1
2
1
100
 
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进
行评判(表示相应事件的概率);①;②;③.
评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(ⅰ)从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望
(ⅱ)从样本中随意抽取2件零件,计算其中次品个数的数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
已知某厂生产的电子产品的使用寿命(单位:小时)服从正态分布,且
(1)现从该厂随机抽取一件产品,求其使用寿命在的概率;
(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在的件数为,求的分布列和数学期望
当前题号:2 | 题型:解答题 | 难度:0.99
设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则D(η)=   (  )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别
第一阶梯水量
第二阶梯水量
第三阶梯水量
月用水量范围(单位:立方米)



 
从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:

(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;
(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.
当前题号:4 | 题型:解答题 | 难度:0.99
随机变量的值为____________.
当前题号:5 | 题型:填空题 | 难度:0.99
某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.
 
第一周
第二周
第三周
第四周
甲组
20
25
10
5
乙组
8
16
20
16
 
(1)在甲组内任选两人,求恰有一人优秀的概率;
(2)每个员工技能测试是否达标相互独立,以频率作为概率.
(i)设公司员工在方式一、二下的受训时间分别为,求的分布列,若选平均受训时间少的,则公司应选哪种培训方式?
(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
若已知随机变量,则____
当前题号:7 | 题型:填空题 | 难度:0.99
某兴趣小组在科学馆的帕斯卡三角仪器前进行探究实验.如图所示,每次使一个实心小球从帕斯卡三角仪器的顶部入口落下,当它在依次碰到每层的菱形挡板时,会等可能地向左或者向右落下,在最底层的7个出口处各放置一个容器接住小球,该小组连续进行200次试验,并统计容器中的小球个数得到柱状图:

(Ⅰ)用该实验来估测小球落入4号容器的概率,若估测结果的误差小于,则称该实验是成功的.试问:该兴趣小组进行的实验是否成功?(误差
(Ⅱ)再取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.(计算时采用概率的理论值)
当前题号:8 | 题型:解答题 | 难度:0.99
小明同学喜欢篮球,假设他每一次投篮投中的概率为,则小明投篮四次,恰好两次投中的概率是(  )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
位于坐标原点的一个质点按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是.质点移动五次后位于点的概率是________.
当前题号:10 | 题型:填空题 | 难度:0.99