- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- 事件的独立性
- 独立重复试验
- + 二项分布
- 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某玻璃工厂生产一种玻璃保护膜,为了调查一批产品的质量情况,随机抽取了10件样品检测质量指标(单位:分)如下:38,43,48,49,50,53,57,60,69,70. 经计算得
,
,生产合同中规定:质量指标在62分以上的产品为优质品,一批产品中优质品率不得低于15%.
(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;
(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布
,其中
近似为样本平均数,
近似为样本方差,利用该正态分布,是否有足够的理由判断这批产品中优质品率满足生产合同的要求?
附:若
,则
,


(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;
(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布



附:若



某商场举行促销活动,有两个摸奖箱,
箱内有一个“
”号球,两个“
”号球,三个“
”号球、四个无号球,
箱内有五个“
”号球,五个“
”号球,每次摸奖后放回,每位顾客消费额满
元有一次
箱内摸奖机会,消费额满
元有一次
箱内摸奖机会,摸得有数字的球则中奖,“
”号球奖
元,“
”号球奖
元,“
”号球奖
元,摸得无号球则没有奖金.
(1)经统计,顾客消费额
服从正态分布
,某天有
位顾客,请估计消费额
(单位:元)在区间
内并中奖的人数.(结果四舍五入取整数)
附:若
,则
,
.
(2)某三位顾客各有一次
箱内摸奖机会,求其中中奖人数
的分布列.
(3)某顾客消费额为
元,有两种摸奖方法,
方法一:三次
箱内摸奖机会;
方法二:一次
箱内摸奖机会.
请问:这位顾客选哪一种方法所得奖金的期望值较大.

















(1)经统计,顾客消费额





附:若



(2)某三位顾客各有一次


(3)某顾客消费额为

方法一:三次

方法二:一次

请问:这位顾客选哪一种方法所得奖金的期望值较大.
《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为
、
、
、
、
、
、
、
共8个等级.参照正态分布原则,确定各等级人数所占比例分别为
、
、
、
、
、
、
、
.选考科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则,分别转换到
、
、
、
、
、
、
、
八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
.
(1)求物理原始成绩在区间
的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记
表示这3人中等级成绩在区间
的人数,求
的分布列和数学期望.
(附:若随机变量
,则
,
,
)



























(1)求物理原始成绩在区间

(2)按高考改革方案,若从全省考生中随机抽取3人,记



(附:若随机变量




某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,
学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为
分,
学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为
分,则
的值为( )





A.![]() | B.![]() | C.![]() | D.![]() |
某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为
,用ξ表示这5位乘客在第20层下电梯的人数,求:
(1)随机变量ξ的分布列;
(2)随机变量ξ的均值.

(1)随机变量ξ的分布列;
(2)随机变量ξ的均值.