- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立重复试验的概念
- + 独立重复试验的概率问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列.
甲、乙两人各进行3次射击,甲每次击中目标的概率为
,乙每次击中目标的概率为
求:(1)甲恰好击中目标2次的概率;(2)乙至少击中目标2次的概率;


(3)乙恰好比甲多击中目标2次的概率
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,求一等品的个数不少于3个的概率.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,求一等品的个数不少于3个的概率.
某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的
(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设.
(Ⅰ)求他们选择的项目所属工程类别相同的概率;
(Ⅱ)记ξ为3人中选择的项目属于B类工程或C类工程的人数,求ξ的分布列及数学期望.

(Ⅰ)求他们选择的项目所属工程类别相同的概率;
(Ⅱ)记ξ为3人中选择的项目属于B类工程或C类工程的人数,求ξ的分布列及数学期望.
有甲、乙两种味道和颜色都极为相似的名酒各3杯,从中挑出3杯称为一次试验,如果能将甲种酒全部挑出来,算作试验成功一次.某人随机地去挑,求:
(I)试验一次就成功的概率是多少?
(II)恰好在第三次试验成功的概率是多少?
(III)连续试验3次,恰好一次试验成功的概率是多少?
(I)试验一次就成功的概率是多少?
(II)恰好在第三次试验成功的概率是多少?
(III)连续试验3次,恰好一次试验成功的概率是多少?
在一次大型活动中,在安全保障方面,警方从武警训练基地挑选防暴警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有
名武警战士(分别记为
、
、
、
)拟参加挑选,且每人能通过体能、射击、反应的概率分别为
、
、
.这三项测试能否通过相互之间没有影响.
(1)求
能够入选的概率;
(2)规定:按入选人数得训练经费(每入选
人,则相应的训练基地得到
元的训练经费),求该基地得到训练经费不大于
元的概率.








(1)求

(2)规定:按入选人数得训练经费(每入选



某校高二年级设计了一个实验学科的能力考查方案:考生从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.规定:至少正确完成其中2道题的便可通过该学科的能力考查.已知6道备选题中考生甲能正确完成其中4道题,另2道题不能完成;考生乙正确完成每道题的概率都为
.
(Ⅰ)分别求考生甲、乙能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为
,写出
的概率分布列,并求
及
.

(Ⅰ)分别求考生甲、乙能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为




甲、乙两选手比赛,假设每局比赛甲胜的概率是
,乙胜的概率是
,不会出现平局.
(1)如果两人赛3局,求甲恰好胜2局的概率和乙至少胜1局的概率;
(2)如果采用五局三胜制
若甲、乙任何一方先胜3局,则比赛结束,结果为先胜3局者获胜
,求甲获胜的概率.


(1)如果两人赛3局,求甲恰好胜2局的概率和乙至少胜1局的概率;
(2)如果采用五局三胜制


一个袋中装有
个形状大小完全相同的小球,球的编号分别为
,
,
,
,
,
.
(
)若从袋中每次随机抽取
个球,有放回的抽取
次,求取出的两个球编号之和为
的概率.
(
)若从袋中每次随机抽取
个球,有放回的抽取
次,求恰有
次抽到
号球的概率.
(
)若一次从袋中随机抽取
个球,求球的最大编号为
的概率.







(




(





(


