- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 独立重复试验的概念
- 独立重复试验的概率问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列说法正确的是________.
①某同学投篮命中率为0.6,他10次投篮中命中的次数ξ是一个随机变量,且ξ~B(10,0.6);
②某福彩的中奖概率为p,某人一次买了8张,中奖张数ξ是一个随机变量,且ξ~B(8,p);
③从装有5个红球5个白球的袋中,有放回的摸球,直到摸出白球为止,则摸球次数ξ是随机变量,且
.
①某同学投篮命中率为0.6,他10次投篮中命中的次数ξ是一个随机变量,且ξ~B(10,0.6);
②某福彩的中奖概率为p,某人一次买了8张,中奖张数ξ是一个随机变量,且ξ~B(8,p);
③从装有5个红球5个白球的袋中,有放回的摸球,直到摸出白球为止,则摸球次数ξ是随机变量,且

某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为
元.
、
的值;
(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为

表1
等级 | 一等品 | 二等品 | 三等品 | 次品 |
表2
等级 | 一等品 | 二等品 | 三等品 | 次品 |
利润 |
(1)求


(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
甲、乙两人各进行一次射击,假设两人击中目标的概率分别是0.6和0.7,且射击结果相互独立,则甲、乙至多一人击中目标的概率为______ .
某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是( )
A.0.18 | B.0.28 |
C.0.37 | D.0.48 |
某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).


(1)当

(2)设一组电子元件的检测次数为


(3)估算当


某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).


(1)当

(2)设一组电子元件的检测次数为


(3)估算当

