刷题首页
题库
高中数学
题干
小李在游乐场玩掷沙包击落玩偶的游戏.假设他第一次掷沙包击中玩偶的概率为0.4,第二次掷沙包击中玩偶的概率为0.7,而玩偶被击中一次就落地的概率为0.5,被击中两次必然落地.若小李至多掷两次沙包,则他能将玩偶击落的概率为______.
上一题
下一题
0.99难度 填空题 更新时间:2020-03-18 05:15:48
答案(点此获取答案解析)
同类题1
2017年3月智能共享单车项目正式登陆某市,两种车型
“小绿车”、“小黄车”
采用分时段计费的方式,“小绿车”每30分钟收费
元
不足30分钟的部分按30分钟计算
;“小黄车”每30分钟收费1元
不足30分钟的部分按30分钟计算
有甲、乙、丙三人相互独立的到租车点租车骑行
各租一车一次
设甲、乙、丙不超过30分钟还车的概率分别为
,
,
,三人租车时间都不会超过60分钟
甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2
设甲、乙、丙三人所付的费用之和为随机变量
,求
的分布列和数学期望.
同类题2
三个元件
,
,
,正常工作的概率分别为
,
,
且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是( ).
A.
B.
C.
D.
同类题3
为了实现中国梦的构想,在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为
、
、
,且三个项目是否成功互相独立.
(1)求恰有两个项目成功的概率;
(2)求至少有一个项目成功的概率.
同类题4
已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设
X
表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求
.
同类题5
某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过
关者奖励
件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;
(Ⅱ)估计小明在3 次游戏中至少过两关的平均次数;
(Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率.
相关知识点
计数原理与概率统计
随机变量及其分布
二项分布及其应用
事件的独立性
相互独立事件与互斥事件
独立事件的乘法公式