- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次.记事件
{第一个四面体向下的一面出现偶数};事件
{第二个四面体向下的一面出现奇数};
{两个四面体向下的一面或者同时出现奇数,或者同时出现偶数}.给出下列结论:①
;②
;③
,其中正确的结论个数为( )






A.0 | B.1 | C.2 | D.3 |
2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:
(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;
(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.
| 非常困难 | 一般 |
男考生 | 20 | 30 |
女考生 | 40 | 10 |
(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;
(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.
某仪器经过检验合格才能出厂,初检合格率为
;若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为
.每台仪器各项费用如表:
(1)求每台仪器能出厂的概率;
(2)求生产一台仪器所获得的利润为
元的概率(注:利润=出厂价-生产成本-检验费-调试费);
(3)假设每台仪器是否合格相互独立,记
为生产两台仪器所获得的利润,求
的分布列和数学期望.


项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | ![]() | ![]() | ![]() | ![]() |
(1)求每台仪器能出厂的概率;
(2)求生产一台仪器所获得的利润为

(3)假设每台仪器是否合格相互独立,记





















(1)若两个顾客均分别消费了

(2)若某顾客消费恰好满

从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为
A.0.24 | B.0.26 | C.0.288 | D.0.292 |
甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.2.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为( )
A.0. 36 | B.0. 49 | C.0. 51 | D.0. 75 |
某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为
,求
的分布列和数学期望.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为


某市旅游局为了进一步开发旅游资源,需要了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如下:若景点甲中的数据的中位数是126,景点乙中的数据的平均数是124.

(1)求
,
的值;
(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为
,求概率
;
(3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为
,求
的分布列和期望.

(1)求


(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为


(3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为


眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为
,乙队中3人答对的概率分别为
,
,
,且各人回答正确与否相互之间没有影响.
(1)分别求甲队总得分为0分;2分的概率;
(2)求甲队得2分乙队得1分的概率.




(1)分别求甲队总得分为0分;2分的概率;
(2)求甲队得2分乙队得1分的概率.