- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛掷3枚质地均匀的硬币,若
{既有正面向上又有反面向上},
{至多有1枚反面向上},则A与B( )


A.是互斥事件 | B.是对立事件 | C.是相互独立事件 | D.不是相互独立事件 |
设进入某商场的每一位顾客购买甲种商品的概率都为0.5,购买乙种商品的概率都为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的,求:
(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;
(2)进入商场的1位顾客,购买甲、乙两种商品中的一种的概率;
(3)进入商场的1位顾客,至少购买甲、乙两种商品中的一种的概率.
(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;
(2)进入商场的1位顾客,购买甲、乙两种商品中的一种的概率;
(3)进入商场的1位顾客,至少购买甲、乙两种商品中的一种的概率.
为弘扬中华传统文化,某单位举行了诗词大赛,经过初赛,最终甲乙两人进行决赛,争夺冠亚军,决赛规则如下:①比赛共设有五道题;②双方轮流答题,每次回答一道,两人答题的先后顺序通过抽签决定;③若答对,自已得1分;若答错,则对方得1分;④先得3分者获胜.
已知甲、乙各参加了三场初赛,答题情况统计如下表:
以甲、乙初赛三场答题的平均正确率作为他们决赛答题正确的概率,且他们每次答题的结果相互独立,
(1)若甲先答题,求甲
获得冠军的概率;
(2)若甲先答题,求甲获得冠军的概率;
(3)甲获得冠军是否与谁先答题有关?(不要求写过程)
已知甲、乙各参加了三场初赛,答题情况统计如下表:
| 第一场 | 第二场 | 第三场 |
甲 | 8对2错 | 7对3错 | 9对1错 |
乙 | 7对3错 | 10对0错 | 8对2错 |
以甲、乙初赛三场答题的平均正确率作为他们决赛答题正确的概率,且他们每次答题的结果相互独立,
(1)若甲先答题,求甲

(2)若甲先答题,求甲获得冠军的概率;
(3)甲获得冠军是否与谁先答题有关?(不要求写过程)
如图, A, B, C表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________

国家公务员考试,某单位已录用公务员5人,拟安排到
三个科室工作,但甲必须安排在
科室,其余4人可以随机安排.
(1)求每个科室安排至少1人至多2人的概率;
(2)设安排在
科室的人数为随机变量
,求
的分布列和数学期望.


(1)求每个科室安排至少1人至多2人的概率;
(2)设安排在



经统计,某医院一个结算窗口每天排队结算的人数及相应的概率如下:
(1)求每天超过20人排队结算的概率;
(2)求2天中,恰有1天出现超过20人排队结算的概率.
排除人数 | 0--5 | 6--10 | 11--15 | 16--20 | 21--25 | 25人以上 |
概率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)求每天超过20人排队结算的概率;
(2)求2天中,恰有1天出现超过20人排队结算的概率.
甲袋中装有大小相同的红球1个,白球2个;乙袋中装有与甲袋中相同大小的红球2个,白球3个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出2个小球.
(Ⅰ)求从乙袋中取出的2个小球中仅有1个红球的概率;
(Ⅱ)记从乙袋中取出的2个小球中白球个数为随机变量
,求
的分布列和数学期望.
(Ⅰ)求从乙袋中取出的2个小球中仅有1个红球的概率;
(Ⅱ)记从乙袋中取出的2个小球中白球个数为随机变量


乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(I) 求开球第4次发球时,甲、乙的比分为1比2的概率;
(II) 求开始第5次发球时,甲得分领先的概率.
(I) 求开球第4次发球时,甲、乙的比分为1比2的概率;
(II) 求开始第5次发球时,甲得分领先的概率.