- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,用A、B、C三类不同的元件连接成两个系统
、
,当元件A、B、C都正常工作时,系统
正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统
正常工作;系统
,
正常工作的概率分别为
,
,

1
若元件A、B、C正常工作的概率依次为
,
,
,求
,
;
2
若元件A、B、C正常工作的概率的概率都是
,求
,
,并比较
,
的大小关系.























“共享单车”的操控企业无论是从经济效益,还是从惠及民生都给人们带来一定方便,可是,国人的整体素养待提高,伤痕累累等不文明行为也遍及大江南北.某市建立了共享单车服务系统,初次交押金时个人积分为100分,当积分低于60分时,借车卡将自动锁定,禁止借车.共享单车管理部门按相关规定扣分,且扣分规定三条如下:
i.共享单车在封闭式小区、大楼、停车场、车库等区域乱停乱放,扣1分;
ii.闯红灯、逆行、在机动车道内骑行,扣2分;
iii.损坏共享单车、私自上锁、私藏,扣5分.
已知甲、乙两人独立出行,各租用共享单车一次:甲、乙扣1分的概率分别是0.4和0.5;甲、乙扣2分的概率分别是0.4和0.3;租用共享单车人均触规定三条中一条,且触规定三条中任一条就归还车.
(1)求甲、乙两人所扣积分相同的概率;
(2)若甲、乙两人在初次租用共享单车一次后所剩下的积分之和为X,求随机变量X的数学期望.
i.共享单车在封闭式小区、大楼、停车场、车库等区域乱停乱放,扣1分;
ii.闯红灯、逆行、在机动车道内骑行,扣2分;
iii.损坏共享单车、私自上锁、私藏,扣5分.
已知甲、乙两人独立出行,各租用共享单车一次:甲、乙扣1分的概率分别是0.4和0.5;甲、乙扣2分的概率分别是0.4和0.3;租用共享单车人均触规定三条中一条,且触规定三条中任一条就归还车.
(1)求甲、乙两人所扣积分相同的概率;
(2)若甲、乙两人在初次租用共享单车一次后所剩下的积分之和为X,求随机变量X的数学期望.
某大学为调研学生在
,
两家餐厅用餐的满意度,从在
,
两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以10为组距分成6组:
,
,
,
,
,
,得到
餐厅分数的频率分布直方图,和
餐厅分数的频数分布表:

定义学生对餐厅评价的“满意度指数”如下:
(Ⅰ)在抽样的100人中,求对
餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在
,
两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对
餐厅评价的“满意度指数”比对
餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从
,
两家餐厅中选择一家用餐,你会选择哪一家?说明理由.




整理评分数据,将分数以10为组距分成6组:









定义学生对餐厅评价的“满意度指数”如下:
分数 | ![]() | ![]() | ![]() |
满意度指数 | ![]() | ![]() | ![]() |
(Ⅰ)在抽样的100人中,求对

(Ⅱ)从该校在




(Ⅲ)如果从


某校要通过选拔赛选取一名同学参加市级乒乓球单打比赛,选拔赛采取淘汰制,败者直接出局.现有两种赛制方案:三局两胜制和五局三胜制.问两选手对决时,选择何种赛制更有利于选拔出实力最强的选手,并说明理由.(设各局胜负相互独立,各选手水平互不相同.)
某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为
,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求甲、乙两位同学总共正确作答3个题目的概率(两人同时答对同一个题目视为答对两个);
(2)若甲、乙两位同学答对题目个数分别是
,
,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和
的期望.

(1)求甲、乙两位同学总共正确作答3个题目的概率(两人同时答对同一个题目视为答对两个);
(2)若甲、乙两位同学答对题目个数分别是



甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是
,乙每轮猜对的概率是
;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.


(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.
三个元件
,
,
,正常工作的概率分别为
,
,
且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是( ).








A.![]() | B.![]() | C.![]() | D.![]() |
电路从
到
上共连接着6个灯泡(如图),每个灯泡断路的概率是
,整个电路的连通与否取决于灯泡是否断路,则从
到
连通的概率是( )







A.![]() | B.![]() | C.![]() | D.![]() |