- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某一中不生心理咨询中心服务电话接通率为
,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,则3个人中有2个人成功咨询的概率是( )

A.![]() | B.![]() | C.![]() | D.![]() |
五一假期间,小明参加由某电视台推出的大型户外竞技类活动,该活动共有四关,若四关都闯过,则闯关成功,否则落水失败.小明闯关一至四关的概率一次是
,
,
,
,则小明闯关失败的概率为__________.




在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为()
A.0.998 | B.0.046 | C.0.002 | D.0.954 |
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.

某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为
.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金
(元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为

方案乙:员工连续三次抽奖,每次中奖率均为

(1)求某员工选择方案甲进行抽奖所获奖金

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(1)求恰有一件抽检的6件产品中二等品的概率;
(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.
(1)求恰有一件抽检的6件产品中二等品的概率;
(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.
袋中有大小相同的3个红球和2个白球,现从袋中每次取出一个球,若取出的是红球,则放回袋中,继续取一个球,若取出的是白球,则不放回,再从袋中取一球,直到取出两个白球或者取球5次,则停止取球,设取球次数为
,
(1)求取球3次则停止取球的概率;
(2)求随机变量
的分布列.

(1)求取球3次则停止取球的概率;
(2)求随机变量

某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为
和
,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
成都七中为绿化环境,移栽了银杏树2棵,梧桐树3棵.它们移栽后的成活率分别为
且每棵树是否存活互不影响,求移栽的5棵树中:
(1)银杏树都成活且梧桐树成活2棵的概率;
(2)成活的棵树
的分布列与期望.

(1)银杏树都成活且梧桐树成活2棵的概率;
(2)成活的棵树
