- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一段线路中有4个自动控制的常用开关A、B、C、D,如图连接在一起,假定在2019年9月份开关A,D能够闭合的概率都是0.7,开关B,C能够闭合的概率都是0.8,则在9月份这段线路能正常工作的概率为________.

一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为p、
、
,且每题答对与否相互独立.
(1)当
时,求考生填空题得满分的概率;
(2)若考生填空题得10分与得15分的概率相等,求的p值.


(1)当

(2)若考生填空题得10分与得15分的概率相等,求的p值.
2018年某地区空气质量的记录表明,一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,若今天的空气质量为优良,则明天空气质量为优良的概率是( )
A.0.48 | B.0.6 | C.0.75 | D.0.8 |
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求乙以4比1获胜的概率;
(2)求甲获胜且比赛局数多于5局的概率.
(1)求乙以4比1获胜的概率;
(2)求甲获胜且比赛局数多于5局的概率.
科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为
,且每次考试相互独立,则甲第3次考试才通过科目二的概率为__________.

春天是鼻炎和感冒的高发期,某人在春季里鼻炎发作的概率为
,鼻炎发作且感冒的概率为
,则此人鼻炎发作的条件下,他感冒的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,假设每局比赛中,甲胜乙的概率为
,甲胜丙、乙胜丙的概率都为
,各局比赛的结果都相互独立,第
局甲当裁判.
(1)求第
局甲当裁判的概率;
(2)记前
局中乙当裁判的次数为
,求
的概率分布与数学期望.



(1)求第

(2)记前



袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件
,“摸得的两球不同色”为事件
,则概率
为( )



A.![]() | B.![]() | C.![]() | D.![]() |