- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2019超长“三伏”来袭,虽然大部分人都了解“伏天”不宜吃生冷食物,但随着气温的不断攀升,仍然无法阻挡冷饮品销量的暴增.现在,某知名冷饮品销售公司通过随机抽样的方式,得到其100家加盟超市3天内进货总价的统计结果如下表所示:
(1)由频数分布表大致可以认为,被抽查超市3天内进货总价
,μ近似为这100家超市3天内进货总价的平均值(同一组中的数据用该组区间的中点值作代表),利用正态分布,求
;
(2)在(1)的条件下,该公司为增加销售额,特别为这100家超市制定如下抽奖方案:
①令m表示“超市3天内进货总价超过μ的百分点”,其中
.若
,则该超市获得1次抽奖机会;
,则该超市获得2次抽奖机会;
,则该超市获得3次抽奖机会;
,则该超市获得4次抽奖机会;
,则该超市获得5次抽奖机会;
,则该超市获得6次抽奖机会.另外,规定3天内进货总价低于μ的超市没有抽奖机会;
②每次抽奖中奖获得的奖金金额为1000元,每次抽奖中奖的概率为
.
设超市A参加了抽查,且超市A在3天内进货总价
百元.记X(单位:元)表示超市A获得的奖金总额,求X的分布列与数学期望.
附参考数据与公式:
,若
,则
,
,
.
组别(单位:百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 3 | 11 | 20 | 27 | 26 | 13 |
(1)由频数分布表大致可以认为,被抽查超市3天内进货总价


(2)在(1)的条件下,该公司为增加销售额,特别为这100家超市制定如下抽奖方案:
①令m表示“超市3天内进货总价超过μ的百分点”,其中







②每次抽奖中奖获得的奖金金额为1000元,每次抽奖中奖的概率为

设超市A参加了抽查,且超市A在3天内进货总价

附参考数据与公式:





已知箱中共有6个球,其中红球、黄球、蓝球各2个,每次从该箱中取1个球(每球取到的机会均等),取出后放回箱中,连续取三次.设事件
“第一次取到的球和第二次取到的球颜色不相同”,事件
“三次取到的球颜色都不相同”,则
( )



A.![]() | B.![]() | C.![]() | D.![]() |
甲队和乙队进行乒乓球决赛,采取七局四胜制(当一队贏得四局胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队每局取胜的概率为0.8.且各局比赛结果相互独立,则甲队以4:1获胜的概率是_____
2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评.2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为
,且各篇学位论文是否被评议为“不合格”相互独立.
(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为
,求
;
(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.

(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为


(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.
某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为
,求
的分布列和数学期望.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为


2019年6月7日,是我国的传统节日“端午节”。这天,小明的妈妈煮了7个粽子,其中3个腊肉馅,4个豆沙馅。小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |