- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.
(Ⅰ)求某应聘人员被录用的概率;
(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.
(Ⅰ)求某应聘人员被录用的概率;
(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.
甲、乙二人争夺一场围棋比赛的冠军.若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为
,且各局比赛结果相互独立.则在甲获得冠军的条件下,比赛进行了3局的概率为( )

A.![]() | B.![]() | C.![]() | D.![]() |
某个部件由三个元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
分别抛掷2枚质地均匀的硬币,设“第1枚为正面”为事件A,“第2枚为正面”为事件B,“2枚结果相同”为事件C,有下列三个命题:
①事件A与事件B相互独立;
②事件B与事件C相互独立;
③事件C与事件A相互独立.
以上命题中,正确的个数是( )
①事件A与事件B相互独立;
②事件B与事件C相互独立;
③事件C与事件A相互独立.
以上命题中,正确的个数是( )
A.0 | B.1 | C.2 | D.3 |
如图,CDEF是以O为圆心,半径为1的圆的内接正方形,点H是劣弧
的中点,将一颗豆子随机地扔到圆O内,用A表示事件“豆子落在扇形OCFH内”,B表示事件“豆子落在正方形CDEF内”,则
________ .



某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布
,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.


一次考试中,某班级数学成绩不及格的学生占20%,数学成绩和物理成绩都不及格的学生占15%,已知该班某学生数学成绩不及格,则该生物理成绩也不及格的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知第一次取得红球,则第二次取得白球的概率为__________.
体育课上定点投篮项目测试规则:每位同学有
次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投
次为止.每次投中与否相互独立,某同学一次投篮投中的概率为
,若该同学本次测试合格的概率为
,则
_____ .




