- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为()
A.0.998 | B.0.046 | C.0.002 | D.0.954 |
(本小题满分12分)为预防H1N1病毒爆发,某生物技术公司研制出一种新流感
疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司
选定2000个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知
,
,求通过测试的概率.
疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司
选定2000个流感样本分成三组,测试结果如下表:
分组 | A组 | B组 | C组 |
疫苗有效 | 673 | ![]() | ![]() |
疫苗无效 | 77 | 90 | ![]() |
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知


诚诚、勤勤、立立、达达4位同学到四个社区做服务,每人只去一个社区,设事件
为“四个人去的社区不相同”,
为“勤勤独自去一个社区”,则概率
等于__________.



端午假期即将到来,永辉超市举办“浓情端午高考加油”有奖促销活动,凡持高考准考证考生及家长在端年节期间消费每超过600元(含600元),均可抽奖一次,抽奖箱里有10个形状、大小完全相同的小球(其中红球有3个,黑球有7个),抽奖方案设置两种,顾客自行选择其中的一种方案.

方案一:
从抽奖箱中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:
从抽奖箱中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.每次摸取1球,连摸3次,每摸到1次
(1)若小南、小开均分别消费了600元,且均选择抽奖方案一,试求他们均享受免单优惠的概率;
(2)若小杰消费恰好满1000元,试比较说明小杰选择哪一种抽奖方案更合算?

方案一:
从抽奖箱中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:
从抽奖箱中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.每次摸取1球,连摸3次,每摸到1次
(1)若小南、小开均分别消费了600元,且均选择抽奖方案一,试求他们均享受免单优惠的概率;
(2)若小杰消费恰好满1000元,试比较说明小杰选择哪一种抽奖方案更合算?
各国医疗科研机构都在研制某种病毒疫苗,现有G,E,F三个独立的医疗科研机构,它们在一定时期内能研制出疫苗的概率分别是
.求:
(1)他们都研制出疫苗的概率;
(2)他们都失败的概率;
(3)他们能够研制出疫苗的概率.

(1)他们都研制出疫苗的概率;
(2)他们都失败的概率;
(3)他们能够研制出疫苗的概率.
某居民小区有两个相互独立的安全防范系统
和
,系统
和系统
在任意时刻发生故障的概率分别为
和
,若在任意时刻恰有一个系统不发生故障的概率为
,则
( )








A.![]() | B.![]() | C.![]() | D.![]() |
已知甲、乙两位射手,甲击中目标的概率为
,乙击中目标的概率为
,如果甲乙两仁射手的射击相互独立,那么甲乙两射手同时瞄准一个目标射击,目标被射中的概率为_________.

