- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区工会利用 “健步行
”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为
类会员,年龄大于40岁的会员为
类会员.为了解会员的健步走情况,工会从
两类会员中各随机抽取
名会员,统计了某天他们健步走的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组,将抽取的
类会员的样本数据绘制成频率分布直方图,
类会员的样本数据绘制成频率分布表(图、表如下所示).

(Ⅰ)求
和
的值;
(Ⅱ)从该地区
类会员中随机抽取
名,设这
名会员中健步走的步数在
千步以上(含
千步)的人数为
,求
的分布列和数学期望;
(Ⅲ)设该地区
类会员和
类会员的平均积分分别为
和
,试比较
和
的大小(只需写出结论).


















(Ⅰ)求


(Ⅱ)从该地区







(Ⅲ)设该地区






重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里
0.2元/分钟”.刚在重庆参加工作的小刘拟租用“共享吉利博瑞车”上下班,同单位的邻居老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔开车上下班总共也需花费大约1小时”,并将自己近50天的往返开车的花费时间情况统计如表:

将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.
(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);
(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有
天为“最优选择”,求
的分布列和数学期望.


将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.
(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);
(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有


已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
①试说明上述监控生产过程方法的合理性;
②下面是检验员在一天内抽取的16个零件的尺寸:

经计算得
=
=9.97,s=
=
≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数
作为μ的估计值
,用样本标准差s作为σ的估计值
,,利用估计值判断是否需对当天的生产过程进行检查?剔除(
﹣3
+3
)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,
≈0.09.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
①试说明上述监控生产过程方法的合理性;
②下面是检验员在一天内抽取的16个零件的尺寸:

经计算得




用样本平均数






附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,

袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸得红球”为事件A,“摸得的两球同色”为事件B,则概率P(B|A)=________.
抛掷一枚均匀骰子2次,在下列事件中,与事件“第一次得到6点”不相互独立的是( )
A.第二次得到6点 |
B.第二次的点数不超过3 |
C.第二次的点数是奇数 |
D.两次得到的点数和是12 |