- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为进一步优化能源消费结构,某市决定在一地处山区的
县推进光伏发电项目.在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表.以样本的频率作为概率.
(I)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为
,求
的数学期望和方差;
(II)已知该县某山区自然村有居民300户.若计划在该村安装年发电量为300000度的发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度进行收购.试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元? (同一组中的用电量数据用该组区间的中点值作代表)

用电量(度) | ![]() | ![]() | ![]() | ![]() | ![]() |
户数 | 5 | 15 | 10 | 15 | 5 |
(I)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为


(II)已知该县某山区自然村有居民300户.若计划在该村安装年发电量为300000度的发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度进行收购.试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元? (同一组中的用电量数据用该组区间的中点值作代表)
一个盒子里装有3种颜色,大小形状质地均相同的12个球,其中黄球5个,蓝球4个,绿球3个,现从盒子中随机取出两个球,记事件
: “取出的两个球颜色不同”,事件
:“取出一个黄球,一个蓝球”,则
( )



A.![]() | B.![]() | C.![]() | D.![]() |
某保险公司针对电动自行车车主推出甲、乙两种保险,假设某地共有20000名车主,每名车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立。
(l) 用
表示该地的20000位车主中,甲、乙两种保险都不购买的车主数.求
的期望:
(2) 设有10000人购买了甲种保险,每一份的保费为60元,根据统计,一年内甲种保险的出险率(即每位投保人出险的概率)为1%,一旦出险,保险公司赔偿出险车主5000元(每年对每一名购买了甲种保险的车主最多赔偿一次,利用附表给出的数据,估算保险公司在该保险中的获得的利润的数学期望在1OOOOO元200000元之间的概率.
(利润=总保费收入一总赔偿支出)
附表:
(l) 用


(2) 设有10000人购买了甲种保险,每一份的保费为60元,根据统计,一年内甲种保险的出险率(即每位投保人出险的概率)为1%,一旦出险,保险公司赔偿出险车主5000元(每年对每一名购买了甲种保险的车主最多赔偿一次,利用附表给出的数据,估算保险公司在该保险中的获得的利润的数学期望在1OOOOO元200000元之间的概率.
(利润=总保费收入一总赔偿支出)
附表:

![]() | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
![]() | 0.130 | 0.220 | 0.333 | 0.542 | 0.585 | 0.670 | 0.702 |
某公司在新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为
,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则需进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则不能获得奖金.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获得奖金400元.
(1)求员工选择方案甲进行抽奖所获奖金
(元)的分布列.
(2)试比较某员工选择方案甲与选择方案乙进行抽奖,哪个方案更划算?
(3)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为

方案乙:员工连续三次抽奖,每次中奖率均为

(1)求员工选择方案甲进行抽奖所获奖金

(2)试比较某员工选择方案甲与选择方案乙进行抽奖,哪个方案更划算?
(3)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.
近年来,双十一购物狂欢节(简称“双11”)活动已成为中国电子商务行业年度盛事,某网络商家为制定2018年“双11”活动营销策略,调查了2017年“双11”活动期间每位网购客户用于网购时间
(单位:小时),发现
近似服从正态分布
.
(1)求
的估计值;
(2)该商家随机抽取参与2017年“双11”活动的10000名网购客户,这10000名客户在2017年“双11”活动期间,用于网购时间
属于区间
的客户数为
.该商家计划在2018年“双11”活动前对这
名客户发送广告,所发广告的费用为每位客户0.05元.
(i)求该商家所发广告总费用的平均估计值;
(ii)求使
取最大值时的整数
的值.
附:若随机变量
服从正态分布
,则
,
,
.



(1)求

(2)该商家随机抽取参与2017年“双11”活动的10000名网购客户,这10000名客户在2017年“双11”活动期间,用于网购时间




(i)求该商家所发广告总费用的平均估计值;
(ii)求使


附:若随机变量





某电视图夏日水上闯关节目中的前三关的过关率分别为0.8,0.6,0.5,只有通过前一关才能进入下一关,且通过每关相互独立,一选手参加该节目,则该选手只闯过前两关的概率为( )
A.0.48 | B.0.4 | C.0.32 | D.0.24 |
假设每一架飞机的引擎在飞行中出现故障率为
,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行,要使4引擎飞机比2引擎飞机更安全,则
的取值范围是( )


A.![]() | B.![]() | C.![]() | D.![]() |