- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3
3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元.
(1)求概率
;
(2)求
的概率分布及数学期望
.

(1)求概率

(2)求



将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.
(Ⅰ)求4本书恰好放在四个不同抽屉中的概率;
(Ⅱ)随机变量
表示放在2号抽屉中书的本数,求
的分布列和数学期望
.
1 | 2 | 3 | 4 |
(Ⅰ)求4本书恰好放在四个不同抽屉中的概率;
(Ⅱ)随机变量



甲,乙两人站在
点处分别向
,
,
三个目标进行射击,每人向三个目标各射击一次,每人每次射击每个目标均相互独立,且两人各自击中
,
,
的概率分别都为
,
,
.
(1)设
表示甲击中目标的个数,求随机变量
的分布列和数学期望;
(2)求甲乙两人共击中目标数为2个的概率.










(1)设


(2)求甲乙两人共击中目标数为2个的概率.
“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.
(1)求X为“回文数”的概率;
(2)设随机变量
表示X,Y两数中“回文数”的个数,求
的概率分布和数学期望
.
(1)求X为“回文数”的概率;
(2)设随机变量



盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;
(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为
,随机变量
表示
的最大数,求
的概率分布和数学期望
.
(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;
(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为





某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量
(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量
与其蕴含的能量
(单位:百亿万焦)之间的部分对应数据为如下表所示:
用最小二乘法求出
关于
的线性回归方程
;(回归方程系数用分数表示)
(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:
,
.

(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量


年入流量![]() | 6 | 8 | 10 | 12 | 14 |
蕴含的能量![]() | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出



(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量

年入流量![]() | ![]() | ![]() | ![]() |
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:


在
年俄罗斯索契冬奥会某项目的选拔比赛中,
、
两个代表队进行对抗赛,每队三名队员,
队队员是
、
、
,
队队员是
、
、
,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得
分,负队得
分,设
队、
队最后所得总分分别为
、
且
.
(1)求
队得分为
分的概率;
(2)求
的分布列;并用统计学的知识说明哪个队实力较强.


















对阵队员 | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
(1)求


(2)求

某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;
(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.
(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;
(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.
在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:

规定:当产品中的此种元素含量
毫克时为优质品.
(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数
的分布列及数学期望
.

规定:当产品中的此种元素含量

(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数

