- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,
;当两条棱异面时,
;当两条棱平行时,
的值为两条棱之间的距离,则数学期望
=________.





某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为
千万元,投资远洋捕捞队的资金为
千万元.

(1)利用调研数据估计明年远洋捕捞队的利润
的分布列和数学期望
.
(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.



(1)利用调研数据估计明年远洋捕捞队的利润


(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.
现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为
;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0<p<1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X,对乙项目每投资10万元,X取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X1、X2分别表示对甲、乙两项目各投资10万元一年后的利润.
(1)求X1,X2的概率分布和均值E(X1),E(X2);
(2)当E(X1)<E(X2)时,求p的取值范围.

(1)求X1,X2的概率分布和均值E(X1),E(X2);
(2)当E(X1)<E(X2)时,求p的取值范围.
武汉又称江城,是湖北省省会城市,被誉为中部地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为
,游客之间选择意愿相互独立.
(1)从游客中随机抽取3人,记总得分为随机变量
,求
的分布列与数学期望;
(2)(i)若从游客中随机抽取
人,记总分恰为
分的概率为
,求数列
的前10项和;
(ⅱ)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为
分的概率为
,探讨
与
之间的关系,并求数列
的通项公式.

(1)从游客中随机抽取3人,记总得分为随机变量


(2)(i)若从游客中随机抽取




(ⅱ)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为





抚州不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来抚州参观旅游的人数不胜数.其中,名人园与梦岛被称为抚州的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为
,且游客之间的选择意愿相互独立.
(1)从游客中随机抽取3人,记总得分为随机变量
,求
的分布列与数学期望;
(2)若从游客中随机抽取
人,记总分恰为
分的概率为
,求数列
的前6项和;
(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为
分的概率为
,探讨
与
之间的关系,并求数列
的通项公式.

(1)从游客中随机抽取3人,记总得分为随机变量


(2)若从游客中随机抽取




(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为





11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为
,乙每次投球命中的概率为
,且各次投球互不影响.
(1)经过1轮投球,记甲的得分为
,求
的分布列;
(2)若经过
轮投球,用
表示经过第
轮投球,累计得分,甲的得分高于乙的得分的概率.
①求
;
②规定
,经过计算机计算可估计得
,请根据①中
的值分别写出a,c关于b的表达式,并由此求出数列
的通项公式.


(1)经过1轮投球,记甲的得分为


(2)若经过



①求

②规定




某游戏棋盘上标有第
、
、
、
、
站,棋子开始位于第
站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第
站或第
站时,游戏结束.设游戏过程中棋子出现在第
站的概率为
.
(1)当游戏开始时,若抛掷均匀硬币
次后,求棋子所走站数之和
的分布列与数学期望;
(2)证明:
;
(3)若最终棋子落在第
站,则记选手落败,若最终棋子落在第
站,则记选手获胜.请分析这个游戏是否公平.










(1)当游戏开始时,若抛掷均匀硬币


(2)证明:

(3)若最终棋子落在第


棋盘上标有第
、
、
、
、
站,棋子开始位于第
站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第
站或第
站时,游戏结束.设棋子位于第
站的概率为
.
(1)当游戏开始时,若抛掷均匀硬币
次后,求棋手所走步数之和
的分布列与数学期望;
(2)证明:
;
(3)求
、
的值.










(1)当游戏开始时,若抛掷均匀硬币


(2)证明:

(3)求


根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.

(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取
,
,
,
共25场,在
,
,
,
中随机取两数,求这两数和
的分布列和数学期望;
(2)设四个多功能运动场一个月内各场使用次数之和为
,其相应维修费用为
元,根据统计,得到如下表的
与
数据:
(i)用最小二乘法求
与
之间的回归直线方程;
(ii)
叫做运动场月惠值,根据(i)的结论,试估计这四个多功能运动场月惠值最大时
的值.
参考数据和公式:
,
,
,
,
,
.

(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取









(2)设四个多功能运动场一个月内各场使用次数之和为




![]() | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
![]() | 2302 | 2708 | 2996 | 3219 | 3401 | 3555 | 3689 |
![]() | 2.49 | 2.99 | 3.55 | 4.00 | 4.49 | 4.99 | 5.49 |
(i)用最小二乘法求


(ii)


参考数据和公式:






某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图

(1)若从以上五家“农家乐”中随机抽取两家深人调查,记
为“入住率超过0.6的农家乐的个数,求
的概率分布列
(2)z=lnx,由散点图判断
与
哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a,
的结果精确到0.1)
(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据
,
,

x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |

(1)若从以上五家“农家乐”中随机抽取两家深人调查,记


(2)z=lnx,由散点图判断



(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据



