- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
九龙坡区围绕大力发展高新技术产业、推进高质量城市管理、创造高品质人民生活,建设宜居、宜业、宜游的“三高九龙坡、三宜山水城”的总愿景,全面开启新时代的新梦想、新征程.热心网友“我是坡民”通过问卷,对近五年游客满意度排在前三名的区内景点进行了统计,结果如表一.根据此表,他又对游览过热门景点重庆动物园的100名游客进行满意度调查,给景点打分,满分为100分,得分超过90分的为“特别满意”,其余为“基本满意”,将受调查游客年龄为12岁及以下的人群称为儿童,得到
列联表,如表二:
表一:
表二:
(1)完成表二的列联表,并判断是否有99.9%的把握认为调查对象是否“特别满意”与是否是儿童有关;
(2)为安排节假日出行,“我是坡民”从表一的5个年份中随机选择2个年份,再从这2个年份排名前三的景点中任意选择1个景点,记选择出的景点中“重庆动物园”出现的次数为
,求
的分布列及数学期望
.
参考公式
.
参考数据:
,
,
,
.

表一:
年份景点排名 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
1 | 重庆动物园 | 重庆动物园 | 龙门阵景区 | 彩云湖 | 彩云湖 |
2 | 华岩景区 | 华岩景区 | 重庆动物园龙 | 龙门阵景区 | 黄桷坪涂鸦街 |
3 | 巴国城 | 海兰云天 | 黄桷坪涂鸦街 | 华岩景区 | 重庆动物园 |
表二:
| 特别满意 | 基本满意 | 合计 |
儿童 | 40 | | |
非儿童 | | 30 | |
合计 | 60 | | 100 |
(1)完成表二的列联表,并判断是否有99.9%的把握认为调查对象是否“特别满意”与是否是儿童有关;
(2)为安排节假日出行,“我是坡民”从表一的5个年份中随机选择2个年份,再从这2个年份排名前三的景点中任意选择1个景点,记选择出的景点中“重庆动物园”出现的次数为



参考公式

参考数据:




某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为
)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在
内的植物有8株,在
内的植物有2株.

(Ⅰ)求样本容量
和频率分布直方图中的
,
的值;
(Ⅱ)在选取的样本中,从高度在
内的植物中随机抽取3株,设随机变量
表示所抽取的3株高度在
内的株数,求随机变量
的分布列及数学期望;
(Ⅲ)据市场调研,高度在
内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在
内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?




(Ⅰ)求样本容量



(Ⅱ)在选取的样本中,从高度在




(Ⅲ)据市场调研,高度在


响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记
为参加交流会的5人中喜欢古典文学的人数,求
的分布列及数学期望
.
附:
,其中
.
参考数据:
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记



附:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
某大型工厂有
台大型机器,在
个月中,
台机器至多出现
次故障,且每台机器是否出现故障是相互独立的,出现故障时需
名工人进行维修.每台机器出现故障的概率为
.已知
名工人每月只有维修
台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得
万元的利润,否则将亏损
万元.该工厂每月需支付给每名维修工人
万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有
名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有
名维修工人.
(ⅰ)记该厂每月获利为
万元,求
的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘
名维修工人?











(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有

(2)已知该厂现有

(ⅰ)记该厂每月获利为


(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘

一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列.
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列.
2019年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十一”的先机,对成都地区年龄在15到75岁的人群“是否网上购物”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
(1)若以45岁为分界点,根据以上统计数据填写下面的
列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“网上购物”与年龄有关?
(2)若从年龄在
,
的样本中各随机选取2人进行座谈,记选中的4人中“使用网上购物”的人数为
,求随机变量
的分布列和数学期望.
参考数据:
参考公式:
年龄段 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
购物人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的

| 年龄低于45岁 | 年龄不低于45岁 | 总计 |
使用网上购物 | | | |
不使用网上购物 | | | |
总计 | | | |
(2)若从年龄在




参考数据:
![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:

某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数.
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 10 | 20 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数.
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?
某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为
,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求甲、乙两位同学总共正确作答3个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是
,
,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和
的期望.

(1)求甲、乙两位同学总共正确作答3个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是



为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为




6组,得到如图所示的频率分布直方图.

(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在
内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在
内的人数为X,求X的分布列与数学期望.







(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在


为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员
一年来的工作业绩分数的茎叶图如图所示:

(1)根据职员
的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;
(2)若记职员
的工作业绩的月平均数为
.
①已知该公司还有6位职员的业绩在100以上,分别是
,
,
,
,
,
,在这6人的业绩里随机抽取2个数据,求恰有1个数据满足
(其中
)的概率;
②由于职员
的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了9张卡片,其中有1张卡片上标注奖金为6千元,4张卡片的奖金为4千元,另外4张的奖金为2千元.规则是:获奖职员需要从9张卡片中随机抽出3张,这3张卡片上的金额数之和就是该职员所得奖金.记职员
获得的奖金为
(千元),求
的分布列和期望.


(1)根据职员

(2)若记职员


①已知该公司还有6位职员的业绩在100以上,分别是








②由于职员



