现有一批产品共10件,其中8件为正品,2件为次品,从中抽取3件:
(1)恰有1件次品的抽法有多少种;
(2) 求取到次品数X的分布列.
当前题号:1 | 题型:解答题 | 难度:0.99
已知表1和表2是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
日期
升旗时刻
日期
升旗时刻
日期
升旗时刻
日期
升旗时刻
1月1日
7:36
4月9日
5:46
7月9日
4:53
10月8日
6:17
1月21日
7:31
4月28日
5:19
7月27日
5:07
10月26日
6:36
2月10日
7:14
5月16日
4:59
8月14日
5:24
11月13日
6:56
3月2日
6:47
6月3日
4:47
9月2日
5:42
12月1日
7:16
3月22日
6:15
6月22日
4:46
9月20日
5:59
12月20日
7:31
 
表2:某年2月部分日期的天安门广场升旗时刻表
日期
升旗时刻
日期
升旗时刻
日期
升旗时刻
2月1日
7:23
2月11日
7:13
2月21日
6:59
2月3日
7:22
2月13日
7:11
2月23日
6:57
2月5日
7:20
2月15日
7:08
2月25日
6:55
2月7日
7:17
2月17日
7:05
2月27日
6:52
2月9日
7:15
2月19日
7:02
2月28日
6:49
 
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记为这两人中观看升旗的时刻早于7:00的人数,求的分布列和数学期望
(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断的大小(只需写出结论)
当前题号:2 | 题型:解答题 | 难度:0.99
2018年“双十一”全网销售额达3143.25亿元,相当于全国人均消费225元,同比增长23.8%,监测参与“双十一”狂欢大促销的22家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校1000名大一学生中采用男女分层抽样,分别随机调查了若干个男生和60个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足200元的同学中随机抽取2人发放纪念品,则2人都是女生的概率为多少?
(3)用频率估计概率,从全市所有高校大一学生中随机调查5人,求其中“剁手党”人数的分布列和期望.
当前题号:3 | 题型:解答题 | 难度:0.99
已知某口袋中装有除颜色外其余完全相同的2个白球和3个黑球,现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球). 记换好后袋中的白球个数为,则的数学期望=___,方差=___ .
当前题号:4 | 题型:填空题 | 难度:0.99
为评估设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/
78
79
81
82
83
84
85
86
87
88
89
90
91
93
合计
件数
1
1
3
5
6
19
33
18
4
4
2
1
2
1
100
 
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):
;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备的性能等级.
(2)将直径小于等于的零件或直径大于等于的零件认定为是“次品”,将直径小于等于的零件或直径大于等于的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数的数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某农科所发现,一种作物的年收获量(单位:)与它“相近”作物的株数具有相关关系(所谓两株作物“相近”是指它们的直线距离不超过),并分别记录了相近作物的株数为时,该作物的年收获量的相关数据如下:

(1)根据研究发现,该作物的年收获量可能和它“相近”作物的株数有以下两种回归方程:,利用统计知识,结合相关系数比较使用哪种回归方程更合适;
(2)农科所在如下图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以(1)中选择的回归方程计算所得数据为依据)

参考公式:线性回归方程为,其中
相关系数
参考数值:,其中.
当前题号:6 | 题型:解答题 | 难度:0.99
某项研究性课题由一个团队完成,团队由一个主持人和若干个助手组成,助手分固定和临时两种,每个固定助手的工资为3000元/月,当固定助手人手不够时,需要招聘临时助手,每个临时助手的工资为4000元/月,现在搜集并整理了以往的20个团队需要的助手数;得到如图柱状图.

记n为提供给一个团队的固定助手数(提供的每个固定助手均按3000元/月的标准支付工资).x为一个团队需要的助手数,y为支付给一个团队的助手的月工资总额(单位:元)
(Ⅰ)当n=4时,求y关于x的函数关系式;
(Ⅱ)假设这20个团队中的每一个团队都提供4个固定助手或都提供5个固定助手,分别计算这20个团队每月支付给助手的工资总额,以此作为决策依据,判断每一个团队提供4个固定助手划算还是提供5个固定助手划算;
(Ⅲ)以这20个团队需要助手数的频率代替一个团队需要助手数的概率,若40个团队中需要5个以下(不包括5个)助手数的团队个数记为X,求E(X).
当前题号:7 | 题型:解答题 | 难度:0.99
在“五四青年节”到来之际,启东中学将开展一系列的读书教育活动.为了解高二学生读书教育情况,决定采用分层抽样的方法从高二年级四个社团中随机抽取12名学生参加问卷调査.已知各社团人数统计如下:
 
(1)若从参加问卷调查的12名学生中随机抽取2名,求这2名学生来自同一个社团的概率;
(2)在参加问卷调查的12名学生中,从来自三个社团的学生中随机抽取3名,用表示从社团抽得学生的人数,求的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
组别







频数
25
150
200
250
225
100
50
 
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元)
20
40
概率


 
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①
②若,则.
当前题号:9 | 题型:解答题 | 难度:0.99
甲、乙、丙三人独立的对某一技术难题进行攻关.甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为
(1)求这一技术难题被攻克的概率;
(2)若该技术难题未被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励6万元.奖励规则如下:若只有一人攻克,则此人获得全部奖金6万元;若只有2人攻克,则此二人均分奖金,每人3万元;若三人均攻克,则每人2万元.在这一技术难题被攻克的前提下,设甲拿到的奖金数为,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99