(本小题满分12分)砷是广泛分布于自然界中的非金属元素,长期饮用高砷水会直接危害群众的身心健康和生命安全,而近水农村地区,水质情况更需要关注.为了解甲、乙两地区农村居民饮用水中砷含量的基本情况,分别在两地随机选取10个村子,其砷含量的调查数据如下(单位:):

甲地区的10个村子饮用水中砷的含量:
52   32   41   72   43   35   45   61   53   44
乙地区的10个村子饮用水中砷的含量:
44   56   38   61   72  57   64   71   58   62
(Ⅰ)根据两组数据完成下面茎叶图,试比较两个地区中哪个地区的饮用水中砷含量更高,并说明理由;
(Ⅱ)国家规定居民饮用水中砷的含量不得超过50,现医疗卫生组织决定向两个地区中每个砷超标的村子派驻一个医疗救助小组.用样本估计总体,把频率作为概率,若从乙地区随机抽取3个村子,用表示派驻的医疗小组数,试写出的分布列并求的期望.
当前题号:1 | 题型:解答题 | 难度:0.99
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(Ⅰ)完成下表,并求所种作物的平均年收获量;
Y
51
48
45
42
频数
 
4
 
 
 
(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某学院为了调查本校学生2011年9月“健康上网”(健康上网是指每天上网不超过两小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得数据分成以下六组:[0,5],(5,10],…,(25,30],由此画出样本的频率分布直方图,如图所示.
I)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;
(Ⅱ)现从这40名学生中任取2名,设Y为取出的2名学生中健康上网天数超过20天的人数,求Y的分布列及其数学期望EY).
当前题号:4 | 题型:解答题 | 难度:0.99
随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份(即x=7时)的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的AB两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
 
报废年限
车型
1年
2年
3年
4年
总计
A
20
35
35
10
100
B
10
30
40
20
100
 
经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考数据:
(参考公式:回归直线方程为,其中
当前题号:5 | 题型:解答题 | 难度:0.99
某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级
一等品
二等品
三等品
重量(



 
按分层抽样抽取10只,再随机抽取3只品尝,记为抽到二等品的数量,求抽到二级品的期望.
当前题号:6 | 题型:解答题 | 难度:0.99
某市举行“中学生诗词大赛”海选,规定:成绩大于或等于分的具有参赛资格,某校有名学生参加了海选,所有学生的成绩均在区间内,其频率分布直方图如图:

(Ⅰ)求获得参赛资格的人数;
(Ⅱ)若大赛分初赛和复赛,在初赛中每人最多有次选题答题的机会,累计答对题或答错题即终止,答对题者方可参加复赛,已知参赛者即答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望
当前题号:7 | 题型:解答题 | 难度:0.99
河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:
年龄(岁)






频数
5
10
15
10
5
5
赞成人数
4
6
9
6
3
4
 

(1)请在图中完成被调查人员年龄的频率分布直方图;
(2)若从年龄在两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为,求随机变量的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩作为样本.对这60名学生的成绩进行统计,并按分组,得到如图所示的频率分布直方图.
(Ⅰ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅱ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数);
(Ⅲ)若规定80分以上(含80分)为优秀,用频率估计概率,从全体参赛学生中随机抽取3名,记其中成绩优秀的人数为,求的分布列与期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取部进行测试,其结果如下:
甲种手机供电时间(小时)






乙种手机供电时间(小时)






 
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述部乙种手机中随机抽取部,记所抽部手机供电时间不小于小时的个数为,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99