- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.


(1)求
的值;
(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?
(3)在(2)的前提下,已知面试有4位考官,被抽到的6名学生中有两名被指定甲考官面试,其余4名则随机分配给3位考官中的一位对其进行面试,求这4名学生分配到的考官个数
的分布列和期望.


(1)求

(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?
(3)在(2)的前提下,已知面试有4位考官,被抽到的6名学生中有两名被指定甲考官面试,其余4名则随机分配给3位考官中的一位对其进行面试,求这4名学生分配到的考官个数

汽车
店是一种以“四位一体”为核心的特许经营模式,包括整车销售、零配件销售、售后服务、信息反馈等。某品牌汽车
店为了了解
,
,
三种类型汽车质量问题,对售出的三种类型汽车各取100辆进行跟踪服务,发现各车型一年内需要维修的车辆如下表所示1.
表1
(1)某公司一次性从
店购买该品牌
,
,
型汽车各一辆,记
表示这三辆车的一年内需要维修的车辆数,求
的分布列及数学期望.(各型汽车维修的频率视为其需要维修的概率).
(2)该品牌汽车
店为了对厂家新研发的一种产品进行合理定价,将该产品按使事先拟定的各种价格进行试销相等时间,得到数据如表2.
预计在今后的销售中,销量与单价仍然服从
的关系,且该产品的成本是500元/件,为使4S店获得最大利润(利润=销售收入-成本),该产品的单价应定位多少元?
表1
表2





表1
(1)某公司一次性从






(2)该品牌汽车

预计在今后的销售中,销量与单价仍然服从

表1
车型 | ![]() | ![]() | ![]() |
频数 | 20 | 20 | 40 |
表2
单价![]() | 800 | 820 | 840 | 850 | 880 | 900 |
销量![]() | 90 | 84 | 83 | 80 | 75 | 68 |
为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为15.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设
表示体重超过65公斤的学生人数,求
的分布列及数学期望.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设


为增强市民的节能环保意识,汕头市面向全市征召义务宣传志愿者,从符合条件的 500 名志愿者中随机抽取 100 名,其年龄频率分布直方图如图所示,其中年龄分组区是:
,
(1)求图中
的值,并根据频率分布直方图估计这 500 名志愿者中年龄在
岁的人数;
(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 10 名参加人民广场的宣传活动,再从这 10 名志愿者中选取 3 名担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为
,求
的分布列及数学期望.

(1)求图中


(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 10 名参加人民广场的宣传活动,再从这 10 名志愿者中选取 3 名担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为



某市甲水厂每天生产
万吨的生活用水,其每天固定生产成本为
万元,居民用水的税费价格为每吨
元,该市居民每天用水需求量是在
(单位:万吨)内的随机数,经市场调查,该市每天用水需求量的频率分布直方图如图所示,设
(单位:万吨,
)表示该市一天用水需求量
(单位:万元)表示甲水厂一天销售生活用水的利润(利润=税费收入-固定生产成本),注:当该市用水需求量超过
万吨时,超过的部分居民可以用其他水厂生产的水,甲水厂只收成本厂供应的税费,该市每天用水需求量的概率用频率估计.
的值,并直接写出
表达式;
(2)求甲水厂每天的利润不少于
万元的概率.










(2)求甲水厂每天的利润不少于

2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)估计该组数据的中位数、众数;
(2)由频率分布直方图可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求
;
(3)在(2)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
(ⅰ)得分不低于
可获赠2次随机话费,得分低于
则只有1次;
(ⅱ)每次赠送的随机话费和对应概率如下:

现有一位市民要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列和数学期望.
附:
,
若
,则
,
.

(1)估计该组数据的中位数、众数;
(2)由频率分布直方图可以认为,此次问卷调查的得分




(3)在(2)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
(ⅰ)得分不低于


(ⅱ)每次赠送的随机话费和对应概率如下:

现有一位市民要参加此次问卷调查,记


附:

若



某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量
(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量
(百斤)与每个蔬菜大棚使用农夫1号液体肥料
(千克)之间对应数据为如图所示的折线图.

(1)依据数据的折线图,用最小二乘法求出
关于
的线性回归方程
;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量
是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量
限制,并有如下关系:
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式:
,
.




(1)依据数据的折线图,用最小二乘法求出




(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量

周光照量![]() | 30<X<50 | ![]() | ![]() |
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式:


依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

试估计该河流在8月份水位的中位数;
(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;
(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

试估计该河流在8月份水位的中位数;
(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;
(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
方案 | 防控等级 | 费用(单位:万元) |
方案一 | 无措施 | 0 |
方案二 | 防控1级灾害 | 40 |
方案三 | 防控2级灾害 | 100 |
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
某调查机构随机调查了
岁到
岁之间的
位网上购物者的年龄分布情况,并将所得数据按照
,
,
,
,
分成
组,绘制成频率分布直方图(如图).
(1)求频率分布直方图中实数
的值及这
位网上购物者中年龄在
内的人数;
(2)现采用分层抽样的方法从参与调查的
位网上购物者中随机抽取
人,再从这
人中任选
人,设这
人中年龄在
内的人数为
,求
的分布列和数学期望.









(1)求频率分布直方图中实数



(2)现采用分层抽样的方法从参与调查的








