- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知从
地去
地有①或②两条路可走,并且汽车走路①堵车的概率为
,汽车走路②堵车的概率为
,若现在有两辆汽车走路①,有一辆汽车走路②,且这三辆车是否堵车相互之间没有影响,
(1)若这三辆汽车中恰有一辆汽车被堵的概率为
,求走路②堵车的概率;
(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数
的分布列和数学期望.




(1)若这三辆汽车中恰有一辆汽车被堵的概率为

(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数

某工厂生产的某产品按照每箱10件包装,每箱产品在流入市场之前都要检验.若整箱产品检验不通过,除去检验费用外,每箱还要损失100元.检验方案如下:
第一步,一次性随机抽取2件,若都合格则整箱产品检验通过;若都不合格则整箱产品检验不通过,检验结束,剩下的产品不再检验.若抽取的2件产品有且仅有1件合格,则进行第二步工作.
第二步,从剩下的8件产品中再随机抽取1件,若不合格,则整箱产品检验不通过,检验结束,剩下的产品不再检验.若合格,则进行第三步工作.
第三步,从剩下的7件产品中随机抽取1件,若不合格,则整箱产品检验不通过,若合格,则整箱产品检验通过,检验结束,剩下的产品都不再检验.
假设某箱该产品中有8件合格品,2件次品.
(Ⅰ)求该箱产品被检验通过的概率;
(Ⅱ)若每件产品的检验费用为10元,设该箱产品的检验费用和检验不通过的损失费用之和为
,求
的分布列和数学期望
.
第一步,一次性随机抽取2件,若都合格则整箱产品检验通过;若都不合格则整箱产品检验不通过,检验结束,剩下的产品不再检验.若抽取的2件产品有且仅有1件合格,则进行第二步工作.
第二步,从剩下的8件产品中再随机抽取1件,若不合格,则整箱产品检验不通过,检验结束,剩下的产品不再检验.若合格,则进行第三步工作.
第三步,从剩下的7件产品中随机抽取1件,若不合格,则整箱产品检验不通过,若合格,则整箱产品检验通过,检验结束,剩下的产品都不再检验.
假设某箱该产品中有8件合格品,2件次品.
(Ⅰ)求该箱产品被检验通过的概率;
(Ⅱ)若每件产品的检验费用为10元,设该箱产品的检验费用和检验不通过的损失费用之和为



在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为
,命中一次记3分,没有命中得0分;在B点命中的概率为
,命中一次记2分,没有命中得0分,用随机变量
表示该选手一次投篮测试的累计得分,如果
的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3次.
(1)若该选手选择方案甲,求测试结束后所得分
的分布列和数学期望.
(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.




(1)若该选手选择方案甲,求测试结束后所得分

(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.
为响应绿色出行,某市在:推出“共亨单车”后,又推出“新能源分时租赁汽车”,其中一款新能源分吋租赁汽车具体收费标准为日间
元
分钟,晚间
时30分至次日上午7时30分
收费35元
小时,已知孙先生家离上班地点20公里,每天日间租用该款汽车上、下班各一次
由于堵车、红绿灯等因素,每次路上开车花费的时间
分钟
是一个随机变量
现统计了50次路上开车花费时间,在各时间段内的频数分布情况如表所示:
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为
分钟.
若孙先生一次开车时间不超过40分钟为“路段畅通”,设X表示4次租用新能源分时租赁汽车中“路段畅通”的次数,求X的分布列和期望;
若公司每月给1000元的车补,请估计孙先生每月
按22天计算
的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由
同一时段,用该区间的中点值作代表
.









时间![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 4 | 16 | 18 | 10 | 2 |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为







春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:
,
,
,
,
,
.统计结果如下表所示:
该市高中生压岁钱收入
可以认为服从正态分布
,用样本平均数
(每组数据取区间的中点值)作为
的估计值.
(1)求样本平均数
;
(2)求
;
(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于
的获赠两次读书卡,压岁钱不低于
的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:
现从该市高中生中随机抽取一人,记
(单位:张)为该名高中生获赠的读书卡的张数,求
的分布列及数学期望.
参考数据:若
,则
,
.






组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 20 | 30 | 30 | 10 | 5 |
该市高中生压岁钱收入




(1)求样本平均数

(2)求

(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于


读书卡(单位:张) | 1 | 2 |
概率 | ![]() | ![]() |
现从该市高中生中随机抽取一人,记


参考数据:若



一只口袋中装有形状、大小都相同的10个小球,其中有红球2个,黑球3个,白球5个.
从中1次随机摸出2个球,求2个球颜色相同的概率;
从中1次随机摸出3个球,记白球的个数为X,求随机变量X的概率分布和数学期望
;
每次从袋中随机摸出1个球,记下颜色后放回,连续取3次,求取到红球的次数大于取到白球的次数的概率.




某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为
,当
时,产品为一等品;当
时,产品为二等品;当
时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)
甲生产线生产的产品的质量指标值的频数分布表:
乙生产线产生的产品的质量指标值的频数分布表:
(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率;
(2)若该产品的利润率
与质量指标值
满足关系:
,其中
,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.




甲生产线生产的产品的质量指标值的频数分布表:
指标值分组 | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 30 | 40 | 20 |
乙生产线产生的产品的质量指标值的频数分布表:
指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 15 | 25 | 30 | 20 |
(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率;
(2)若该产品的利润率




在公园游园活动中,有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同.每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在每一次游戏中获奖的概率;
(2)在三次游戏中,记获奖次数为
,求
的概率分布和数学期望.
(1)求在每一次游戏中获奖的概率;
(2)在三次游戏中,记获奖次数为


在某次活动中,有5名幸运之星.这5名幸运之星可获得
、
两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得
奖品,抛掷点数不小于3的获得
奖品.
(1)求这5名幸运之星中获得
奖品的人数大于获得
奖品的人数的概率;
(2)设
、
分别为获得
、
两种奖品的人数,并记
,求随机变量
的分布列及数学期望.




(1)求这5名幸运之星中获得


(2)设





