在公园游园活动中,有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同.每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在每一次游戏中获奖的概率;
(2)在三次游戏中,记获奖次数为,求的概率分布和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
某探险队分为四个小组探险甲、乙、丙三个区域,若每个小组只能探险一个区域,且每个小组选择任何一个区域是等可能的.
(1)求恰有2个小组探险甲区域的概率;
(2)求被探险区域的个数的概率分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
已知随机变量ξη,其中η=4ξ-2,且E(η)=7,若ξ的分布列如下表,则n的值为__.
ξ
1
2
3
4
P

m
n

 
当前题号:3 | 题型:填空题 | 难度:0.99
在某次活动中,有5名幸运之星.这5名幸运之星可获得两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得奖品,抛掷点数不小于3的获得奖品.
(1)求这5名幸运之星中获得奖品的人数大于获得奖品的人数的概率;
(2)设分别为获得两种奖品的人数,并记,求随机变量的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
炎炎夏季,水蜜桃成为备受大家欢迎的一种水果,某果园的水蜜桃质量分布如图所示.
(Ⅰ)求m的值;
(Ⅱ)以频率估计概率,若从该果园中随机采摘5个水蜜桃,记质量在300克以上(含300克)的个数为X,求X的分布列及数学期望;
(Ⅲ)经市场调查,该种水蜜桃在过去50天的销售量(单位:千克)和价格(单位:元/千克)均为销售时间t(天)的函数,且销售量近似地满足f(t)=﹣3t+300(1≤t≤50,t∈N),前30天价格为g(t)=+20(1≤t≤30,t∈N),后20天价格为g(t)=30(31≤t≤50,t∈N),求日销售额S的最大值.
当前题号:5 | 题型:解答题 | 难度:0.99
某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为,在射击比武活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.
(Ⅰ)若,求该小组在一次检测中荣获“先进和谐组”的概率;
(Ⅱ)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为,如果,求的取值范围;
当前题号:6 | 题型:解答题 | 难度:0.99
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2个人去参加甲游戏的概率;
(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).
当前题号:7 | 题型:解答题 | 难度:0.99
某学校在学校内招募了名男志愿者和名女志愿者.将这名志愿者的身高编成如右茎叶图(单位:),若身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取人,再从这人中选人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
已知ξ的分布列为:
ξ
1
2
3
4





 
则Dξ等于()
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
已知,且,则等于(   )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99