- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在公园游园活动中,有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同.每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在每一次游戏中获奖的概率;
(2)在三次游戏中,记获奖次数为
,求
的概率分布和数学期望.
(1)求在每一次游戏中获奖的概率;
(2)在三次游戏中,记获奖次数为


某探险队分为四个小组探险甲、乙、丙三个区域,若每个小组只能探险一个区域,且每个小组选择任何一个区域是等可能的.
(1)求恰有2个小组探险甲区域的概率;
(2)求被探险区域的个数
的概率分布列和数学期望.
(1)求恰有2个小组探险甲区域的概率;
(2)求被探险区域的个数

在某次活动中,有5名幸运之星.这5名幸运之星可获得
、
两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得
奖品,抛掷点数不小于3的获得
奖品.
(1)求这5名幸运之星中获得
奖品的人数大于获得
奖品的人数的概率;
(2)设
、
分别为获得
、
两种奖品的人数,并记
,求随机变量
的分布列及数学期望.




(1)求这5名幸运之星中获得


(2)设






炎炎夏季,水蜜桃成为备受大家欢迎的一种水果,某果园的水蜜桃质量分布如图所示.
(Ⅰ)求m的值;
(Ⅱ)以频率估计概率,若从该果园中随机采摘5个水蜜桃,记质量在300克以上(含300克)的个数为X,求X的分布列及数学期望;
(Ⅲ)经市场调查,该种水蜜桃在过去50天的销售量(单位:千克)和价格(单位:元/千克)均为销售时间t(天)的函数,且销售量近似地满足f(t)=﹣3t+300(1≤t≤50,t∈N),前30天价格为g(t)=
+20(1≤t≤30,t∈N),后20天价格为g(t)=30(31≤t≤50,t∈N),求日销售额S的最大值.
(Ⅰ)求m的值;
(Ⅱ)以频率估计概率,若从该果园中随机采摘5个水蜜桃,记质量在300克以上(含300克)的个数为X,求X的分布列及数学期望;
(Ⅲ)经市场调查,该种水蜜桃在过去50天的销售量(单位:千克)和价格(单位:元/千克)均为销售时间t(天)的函数,且销售量近似地满足f(t)=﹣3t+300(1≤t≤50,t∈N),前30天价格为g(t)=


某射击小组有甲、乙两名射手,甲的命中率为
,乙的命中率为
,在射击比武活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.
(Ⅰ)若
,求该小组在一次检测中荣获“先进和谐组”的概率;
(Ⅱ)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为
,如果
,求
的取值范围;



(Ⅰ)若


(Ⅱ)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为



现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2个人去参加甲游戏的概率;
(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).
(1)求这4个人中恰有2个人去参加甲游戏的概率;
(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).
某学校在学校内招募了
名男志愿者和
名女志愿者.将这
名志愿者的身高编成如右茎叶图(单位:
),若身高在
以上(包括
)定义为“高个子”,身高在
以下(不包括
)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取
人,再从这
人中选
人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选
名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望.








(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取



(Ⅱ)若从所有“高个子”中选




