刷题首页
题库
高中数学
题干
某银行的工作人员记录了3月1号到3月15日上午10:00在该银行取号后等待办理业务的人数,如图所示:
从这15天中,随机选取一天,随机变量
X
表示当天上午10:00在该银行取号后等待办理业务的人数.
(Ⅰ)请把
X
的分布列补充完整;
(Ⅱ)令
为
X
的数学期望,若
求正整数
的最小值;
(Ⅲ)由图判断,从哪天开始的连续五天上午10:00在该银行取号后等待办理业务的人数的均值最大?(结论不要求证明)
上一题
下一题
0.99难度 解答题 更新时间:2018-10-19 03:45:01
答案(点此获取答案解析)
同类题1
某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值
为
,当
时,产品为一级品;当
时,产品为二级品,当
时,产品为三级品,现用两种新配方(分别称为
配方和
配方)做实验,各生产了100件这种产品,
并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)
配方的频数分配表
指标值分组
频数
10
30
40
20
配方的频数分配表
指标值分组
频数
5
10
15
40
30
(Ⅰ)若从
配方产品中有放回地随机抽取3件,记“抽出的
配方产品中至少1件二级品”为事件
,求事件
发生的概率
;
(Ⅱ)若两种新产品的利润率
与质量指标
满足如下关系:
其中
,从长期来看,投资哪种配方的产品平均利润率较大?
同类题2
某公司为庆祝成立二十周年,特举办《快乐大闯关》竞技类有奖活动,该活动共有四关,由两名男职员与两名女职员组成四人小组,设男职员闯过一至四关概率依次是
,女职员闯过一至四关的概率依次是
(1)求女职员闯过四关的概率;
(2)设
表示四人小组闯过四关的人数,求随机变量
的分布列和数学期望.
同类题3
甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下:
测试指标分数
甲产品
8
12
40
32
8
乙产品
7
18
40
29
6
(1)根据以上数据,完成下面的
列联表,并判断是否有
的有把握认为两种产品的质量有明显差异?
甲产品
乙产品
合计
合格品
次品
合计
(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记
为生产1件甲产品和1件乙产品所得的总利润,求随机变量
的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率).
附:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.702
2.706
3.841
5.024
6.635
7.879
10.828
同类题4
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;
(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为
,随机变量
表示
的最大数,求
的概率分布和数学期望
.
同类题5
某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取
株作为样本进行研究.株高在
及以下为不良,株高在
到
之间为正常,株高在
及以上为优等.下面是这
个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁.请根据可见部分,解答下面的问题:
(1)求
的值并在答题卡的附图中补全频率分布直方图;
(2)通过频率分布直方图估计这
株株高的中位数(结果保留整数);
(3)从育种基地内这种品种的种株中随机抽取2株,记
表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量
的分布列(用最简分数表示).
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列