某单位从一所学校招收某类特殊人才.对位已经选拨入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
   逻辑思维能力
运动
协调能力
一般
良好
优秀
一般



良好



优秀



 
例如,表中运动协调能力良好且逻辑思维能力一般的学生有人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为
)求的值.
)从参加测试的位学生中任意抽取位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率.
)从参加测试的位学生中任意抽取位,设运动协调能力或逻辑思维能力优秀的学生人数为,求随机变量的分布列.
当前题号:1 | 题型:解答题 | 难度:0.99
设随机变量的概率分布表如下图,则(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某合资企业招聘大学生时加试英语听力,待测试的小组中有男、女生共10人(其中女生人数多于男生人数),若从中随机选2人,其中恰为一男一女的概率为.
(Ⅰ)求该小组中女生的人数;
(Ⅱ)若该小组中每个女生通过测试的概率均为,每个男生通过测试的概率均为.现对该小组中女生甲、女生乙和男生丙、丁4人进行测试.记这4人中通过测试的人数为随机变量X,求X的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队伍只比赛一场),有高一、高二、高三共三个队参赛,高一胜高二的概率为,高一胜高三的概率为,高二胜高三的概率为,每场胜负相互独立,胜者记1分,负者记0分,规定:积分相同时,高年级获胜.
(1)若高三获得冠军的概率为,求
(2)记高三的得分为,求的分布列和期望.
当前题号:4 | 题型:解答题 | 难度:0.99
设随机变量的分布列如表,则 等于(  )








 
A.B.C.D.不确定
当前题号:5 | 题型:单选题 | 难度:0.99
某班有的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数XB,则E(-X)的值为(  )
A.B.-C.D.-
当前题号:6 | 题型:单选题 | 难度:0.99
实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某小组共7人,利用假期参加义工活动,已知参加义工活动的次数为1,2,3的人数分别为2,2,3.现从这7人中随机选出2人作为该组代表参加座谈会:
(Ⅰ)设A为事件“选出的2人参加义工活动的次数之和为4”,求事件A发生的概率;
(Ⅱ)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列及数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
某高中志愿者部有男志愿者6人,女志愿者4人,这些人要参加元旦联欢会的服务工作.从这些人中随机抽取4人负责舞台服务工作,另外6人负责会场服务工作.
(Ⅰ)设为事件:“负责会场服务工作的志愿者中包含女志愿者但不包含男志愿者”,求事件发生的概率.
(Ⅱ)设表示参加舞台服务工作的女志愿者人数,求随机变量的分布列与数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某工厂两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知生产线生产的产品为合格品的概率分别为.

(1)从生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
当前题号:10 | 题型:解答题 | 难度:0.99